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Abstract – Brownian motion of microscopic particles is driven by collisions with surrounding fluid
molecules. The resulting noise is not white, but coloured, due, e.g., to the presence of hydrodynamic
memory. The noise characteristic time-scale is typically of the same order of magnitude as the
inertial time-scale over which the particle’s kinetic energy is lost due to friction. We demonstrate
theoretically that, in the presence of a temperature gradient, the interplay between these two
characteristic time-scales can have measurable consequences on the particle’s long-time behaviour.
Using homogenization theory, we analyse the infinitesimal generator of the stochastic differential
equation describing the system in the limit where the two time-scales are taken to zero keeping
their ratio constant and derive the thermophoretic transport coefficient, which, we find, can vary in
both magnitude and sign, as observed in experiments. Studying the long-term stationary particle
distribution, we show that particles accumulate towards the colder (positive thermophoresis) or
the hotter (negative thermophoresis) regions depending on their physical parameters.

Copyright c© EPLA, 2012

Introduction. – A microscopic or nanoscopic object
immersed in a fluid, e.g., a Brownian particle or a
biomolecule, undergoes a permanent thermal motion. This
motion is the result of the collisions with the fluid’s
molecules and is typically modelled as driven by a white
Gaussian noise [1]. However, this driving noise is actually
coloured, i.e. it has a characteristic non-zero correlation
time τ , on a very short time-scale of the order of tens of
nanoseconds, due, e.g., to the presence of hydrodynamic
memory [2]. This time-scale is similar to the particle’s
inertial relaxation time, i.e., the characteristic time for loss
of kinetic energy through friction σ=m/γ, where m is the
mass of the particle and γ the friction coefficient [3]. As
we will theoretically demonstrate, the interplay between
these effects, despite occurring on time-scales that might
not be in themselves directly accessible experimentally,
can have measurable effects on the particle’s long-time
behaviour.
In this letter, we consider the dynamics of a Brownian

particle driven by a coloured noise when it is immersed in
a fluid where a temperature gradient is present. We find
that due to the interplay between its two characteristic

(a)E-mail: shottovy@math.arizona.edu

time-scales, τ and σ, the particle can exhibit a directed
motion in response to the temperature gradient; further-
more, studying the long-term stationary particle distri-
bution, we find that particles can accumulate towards
the colder (positive thermophoresis) or the hotter (nega-
tive thermophoresis) regions depending on their physical
parameters and, in particular, on the dependence of their
mobility on the temperature. We remark that, as demon-
strated by the mathematical analysis presented below, the
presence of a coloured noise, as opposed to a white noise,
is crucial for the emergence of such thermophoretic effects.
The velocity of this motion can vary both in magnitude
and sign, as observed in experiments [4–6]. As a result, the
particle moves either towards the cold or the hot side, quite
similarly to what happens in the presence of an exter-
nal driving force, e.g., gravity or electric fields; however,
in this case, no external force is actually acting on the
particles [7].

Mathematical model. – For a spherical particle of
radius R immersed in a fluid of viscosity µ, which in
general depends on the absolute temperature T , i.e., µ=
µ(T ), the friction coefficient γ satisfies Stokes law,

γ(T ) = 6πµ(T )R, (1)

60002-p1



Scott Hottovy et al.

and the diffusion coefficient D is related to γ by the
fluctuation-dissipation relation [8],

D(T ) =
kBT

γ(T )
. (2)

For ease of argument, we will assume that the parti-
cle’s motion is one-dimensional in a horizontal direction
perpendicular to gravity, with position denoted by xt ∈R
for all times t� 0. We also assume viscosity to depend only
on temperature, and fluid thermal expansion and convec-
tion to be negligible. If more complex models are needed,
e.g., to account for interactions between the fluid and the
particle or for the thermal expansion of the fluid, then the
above model may need to be modified and the results may
change, but the approach to address such problem will be
the same as described in this letter. The relation in eq. (2)
assumes local thermodynamic equilibrium [9], which impli-
cates that the temperature gradients should not be too
steep; such conditions have been shown to be experimen-
tally verified, e.g., in ref. [10]. The resulting motion of the
particle is governed by the stochastic Newton equation:

mẍt =−γ(xt)ẋt+ γ(xt)
√
2D(xt)

ηt√
τ
, (3)

with initial conditions x0 = x
∗ and ẋ0 = v∗. The coloured

noise ηt is an Ornstein-Uhlenbeck process (OUP) defined
by the stochastic differential equation (SDE):

dηt =−2
τ
ηtdt+

√
4

τ
dWt. (4)

where τ > 0 is the noise correlation time and
Wt is a standard Wiener process. Its station-
ary solution is a zero-mean Gaussian process with
E[(ηtηs)/τ ] = (1/τ) exp

{− 2
τ
|t− s|} and its covariance

function converges to the delta function as τ tends to
zero.
Typically, the hydrodynamic and inertial memory time-

scales, i.e., τ and σ, are very fast —in particular, much
faster than the typical time resolution at which the particle
Brownian motion is experimentally sampled— and their
effects accumulate over the longer diffusive time-scale
and eventually results in transport dynamics. Therefore,
following Langevin’s approach, it is customary to drop
the inertial term, i.e., set the left-hand side to zero in
eq. (3) [1] and take the time correlation of the noise to zero.
However, the limit of eq. (3) as m→ 0, i.e., σ→ 0, has to
be studied with care, requiring a nontrivial computation,
as, in general, similar limits involve additional drift terms
[11–13]. Here we are interested in the long-time behaviour
of xt and in how the particle undergoes a deterministic
drift in response to a temperature gradient as both
the inertial and the noise characteristic times are taken
to zero. To this end, we will study eq. (3) analysing
the convergence of the infinitesimal operators of the
corresponding diffusion processes (backward Kolmogorov
equations), thus following the well-known methods from

homogenization theory [14–16]. As σ→ 0 and τ → 0, we
expect the limiting equation to be of the form

dxt =A(xt)dt+B(xt)dWt, (5)

where the effective coefficients A(x) and B(x) depend in
general, as shown below, on the relative rate at which σ
and τ go to zero. Therefore, we define

θ=
σ

τ
=
m

γτ
, (6)

which is a dimensionless parameter and, in general,
depends on x, i.e., θ= θ(x). We note that, for consis-
tency, we choose to write the limiting eq. (5) with
the Itô convention —a different choice would change
the coefficients in the following discussion, but not the
physical meaning. The effective drift term A(x) reflects
contributions resulting from the coloured nature of the
noise, as well as from the small mass approximation.
We stress that the particle’s motion is perpendicular to
gravity and A(x) represents a real drift in the particle
position, which arises despite the absence of external
forces acting on it. This is a consequence of the system
not being in thermodynamic equilibrium, as manifested
by the presence of a temperature gradient [7].
For constant viscosity, i.e., µ(x)≡ µ0 and thus
γ(x)≡ γ0, the simultaneous limit as τ → 0 and σ→ 0 was
studied by Freidlin [12]: by taking τ → 0 first and then
σ→ 0, he obtained the zero-mass limit equation (5) with
A(x) = 0, while, by taking σ→ 0 first and then τ → 0,
A(x) = B(x)B

′(x)
2 . Subsequently, Kupferman, Pavliotis

and Stuart [11] showed that, if in the limit θ is constant
in x, all the intermediate cases can be obtained as θ is
varied. In a previous article [13], we studied the limiting
equation for a general class of equations similar to eq. (3)
but driven by a white noise. In this letter, we study the
analogous problem for the coloured-noise case.

Multiscale analysis. – To simplify the following
analysis, we rewrite eq. (3) as a set of first-order SDEs,
setting m= γθτ (eq. (6)) and substituting uτt =

√
mẋτt :



dxτt =
1√
γθτ
uτt dt,

duτt =

[
−1
θτ
uτt +

√
2D(xτt )γ(x

τ
t )

θ
ηt
τ

]
dt,

dηt = − 2τ ηt dt+
√
4
τ
dWt

(7)

with the initial conditions xτ0 = x
∗, uτ0 = v∗ and η0 a

normal random variable with mean zero and variance
1
τ
independent of the Wiener process Wt. The notation

xτt is introduced to distinguish the full 3-dimensional SDE
with coloured noise and mass, from xt which, from now
on, represents the limit as τ, σ→ 0.
To determine the coefficients A(x) and B(x) for the

limiting equation (5), we use a multiscale analysis of the
backward Kolmogorov equation associated with eqs. (7)
[14–16]: we will first write the backward Kolmogorov
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equation for eqs. (7); we will then derive its limit as τ → 0
keeping θ constant; and, finally, we will determine A(x)
and B(x) from this limiting Kolmogorov equation.
Let g(x′, u′, η′, t′|x, u, η, t) be the probability density of

the distribution of the position (x′), the rescaled velocity
(u′) and the coloured noise (η′) of the particle at time t′

given their values (x, u, η) at a time t < t′. The backward
Kolmogorov equation for eqs. (7) is

∂g

∂t
=

[
1

τ
L0+

1√
τ
L1

]
g (8)

with L0 = [
−1
θ
u+

√
2Dγ
θ
η] ∂
∂u
− 2η ∂

∂η
+2 ∂

2

∂η2
and L1 =

u√
γθ
∂
∂x
. We will take advantage of the fact that eq. (8)

involves derivatives with respect to the x, u, η, t
variables only and shorten the notation by writing
g(x′, u′, η′, t′|x, u, η, t) = g(x, u, η, t). Furthermore, we will
not always explicitly indicate the dependence of γ, D and
θ on x.
Following the general multiscale analysis ansatz [14–16],

we postulate the solution to the Kolmogorov equation as
a sum of an asymptotic series,

g= g0+
√
τg1+ τg2+ . . . , (9)

and we substitute it in eq. (8). By matching corresponding
powers of

√
τ , we obtain the following equations:

L0g0 = 0, (10)

L0g1 =−L1g0, (11)

∂g0

∂t
=L0g2+L1g1. (12)

Equation (10) implies that g0(x, u, η) = g0(x), since all
derivatives of L0 act on u and η only.
A solution of eq. (11) has the form

g1(x, y, η) =Φ(x, y, η)
∂g0

∂x
, (13)

where Φ solves the cell problem (see [16], sect. 11.3) defined
as

−L0Φ(x, u, η) = u√
γθ
. (14)

We look for a solution of the form

Φ(x, u, η) =

[√
θ

γ
u+
√
2Dĥ(η)

]
. (15)

Substituting eq. (15) into eq. (14), we get the equation

−2ηĥη +2ĥηη = η with a solution ĥ= η/2 and, therefore,

Φ(x, u, η) =

√
θ

γ
u+

√
D

2
η. (16)

The solvability condition for eq. (12) follows from the
Fredholm alternative [16–18]:∫

R2

{
−L1

(
Φ(x, u, η)

∂g0

∂x

)
+
∂g0

∂t

}
ρ du dη= 0, (17)

for all ρ such that L∗0ρ= 0, where L∗0 is the dual operator
of L0. Thus, we solve the dual problem L

∗
0ρ= 0 with the

dual operator defined as

L∗0 =−
∂

∂u

[(
−1
θ
u+

√
2Dγ

θ
η

)
·
]
+2
∂

∂η
(η·)+ 2 ∂

2

∂η2
(·).

This problem is equivalent to finding the stationary
distribution for a two-dimensional OUP in u and η,
with x as a parameter, i.e., a zero-mean Gaussian
probability density ρ(u, η;x) =C(x) exp{− 12s11u2− s12uη− 12s22η2}, where C(x) is a normalizing factor. Solving
for the parameters sij we obtain s11 =

1
Dγ

(
1+2θ
2θ

)2
,

s12 =− 1√
2Dγθ

1+2θ
2θ and s22 =

1+2θ
2θ . Using this expression

for ρ we can evaluate the integral in eq. (17) and obtain
the backward Kolmogorov equation for g0

∂g0

∂t
=A(x)

∂g0

∂x
+B2(x)

∂2g0

∂x2
, (18)

where, A(x) =
∫
R2
∂Φ
∂x

u√
γθ
ρ(u, η;x) du dη and B(x)2 =

2
∫
R2

u√
γθ
Φρ(u, η;x) du dη. Finally, we can compute the

covariances with respect to the stationary density ρ, i.e.,

E[uη] =
√
2Dγθ
1+2θ and E[u2] = 2θDγ1+2θ , and obtain explicit

formulae for the coefficients of the effective SDE (5):

A(x) =
D′(x)γ(x)− 4θ(x)D(x)γ′(x)

2γ(x)(1+2θ(x))
(19)

and
B(x)2 = 2D(x). (20)

We remark that the diffusion term in the limiting equa-
tion (5) is the same as in the initial equation (3). The
precise meaning of the limiting equation (5) is that the
solution xτt of eq. (7) converges in law to the solution xt of
eq. (5) with the same initial condition x0 = x

∗ as τ, σ→ 0.
A rigorous proof is justified by techniques in [19].

Physical interpretation: drift and probability
density. – Since the effective limiting SDE (eq.(5)) has
been constructed using a stochastic integral with the Itô
convention, the expected position is

E[xt] =E[x0] +E

[∫ t
0

A(xs) ds

]
. (21)

The sign of A(x) determines the direction towards which
a Brownian particle is expected to travel. Therefore, if,
e.g., we have A(x)> 0, the particle will on average travel
towards increasing x until it reaches some boundaries,
which can be either absorbing boundaries or reflecting
boundaries.
In the presence of absorbing boundaries, particles

disappear from the system as soon as they reach a
boundary. Therefore, the sign of A(x) determines the
boundary at which particles are preferentially absorbed,
as schematically shown in fig. 1(a). This situation can be
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(a)

Inlet

Cold Hot

Ab(x) > 0

Aw(x) < 0

(b)
Cold Hot

Fig. 1: (Colour on-line) (a) Schematic representation of the
behaviour of thermophoretic particles in the presence of
absorbing boundaries: black (white) particles have Ab(x)> 0
(Aw(x)< 0) (eq. (19)) and are mostly pushed towards the
right (left) boundary, where they are removed from the chan-
nel. (b) Schematic representation of the behaviour of ther-
mophoretic particles in the presence of reflecting boundaries:
the particles eventually reach a steady-state probability density
ρ∞(x) (eq. (24)), which is different for particles with Ab(x)> 0
(black) and Aw(x)< 0 (white).

experimentally realized, for example, within a relatively
long microfluidic channel where particles are steadily
injected at a certain position, e.g., x= 0, and removed
once they reach either end of the channel. In the presence
of a temperature gradient, these particles move towards
increasing or decreasing x depending on the sign of A(x)
and, therefore, can be sorted and classified on the basis
of their physical and chemical properties that influence
A(x). Such a sorting process is more efficient the longer
the channel and the smaller the noise term, i.e., B(x).
In the presence of reflecting boundaries, particles are

reflected back into the system when they reach a bound-
ary. In this way, once a particle has interacted with
the boundaries multiple times, the particle’s position
xt reaches a steady-state probability density ρ∞(x), as
schematically indicated in fig. 1(b). The time-dependent
ρ(x, t) is the solution to the following Fokker-Planck equa-
tion (also known as forward Kolmogorov equation),

∂ρ

∂t
=− ∂
∂x
[A(x)ρ] +

∂2

∂x2

[
B(x)2

2
ρ

]
, (22)

with a given initial condition ρ(x, 0) = ρ0(x). Since the
Fokker-Planck equation is deterministic, its solution, i.e.,
the evolution of the probability density over time, does
not involve any randomness. As t→+∞, the solution to
eq. (22) converges to the steady-state distribution ρ∞(x),
under certain conditions ([20], sect. 5.2). If we assume the
motion of the particle to be restricted to the interval (a, b),
a< b, then we can solve the stationary Fokker-Planck

equation for the SDE (5) [21]. Given A(x) and B(x) the
stationary solution is

ρ∞(x) =
C

B(x)2
exp

{
2

∫ x
a

A(x̃)

B(x̃)2
dx̃

}
, (23)

which can also be expressed as a function of D(x), γ(x)
and θ(x) as

ρ∞(x) =CD(x)
− 1+4θ(x)
2+4θ(x) γ(x)−

2θ(x)
1+2θ(x) , (24)

where C is a normalizing constant. This situation can be
experimentally realized in closed systems where a temper-
ature gradient is present. Interestingly, this is the case
of most experiments performed to study thermophoresis
and the Soret effect, where a suspension of particles in
a thermal gradient is given enough time to relax to its
steady-state distribution [6,7].

Results and discussion. – For the following discus-
sion, we will express the thermophoretic drift as a func-
tion of T and µ(T ), and since µ(T ) is interpreted as an
expansion around some temperature T0, we will write
∆T = T (x)−T0, and d

dxµ(T ) = µ
′(T )∆T . From eq. (19),

using eqs. (1) and (2), we find that the effective ther-
mophoretic drift is

A(x) = kBT
′µ(T )−µ′(T )∆T [1+ 4θ]
12πRµ2(T ) [1+ 2θ]

, (25)

where we have set T = T (x) and θ= θ(x), suppressing
the dependence on x for brevity and µ′(T ) and T ′

are derivatives with respect to T and x, respectively.
Equation (25) shows that the thermophoretic drift is
determined not only by T ′, but also by the dependence
of µ on T . Interestingly, if µ′(T )> 0 and µ(T )>µ′(T )∆T ,
from eq. (25), there is a critical θ denoted θc such that the
drift A(x) changes sign:

θc =
µ(T )−µ′(T )∆T
4µ′(T )∆T

. (26)

The stationary density is given as

ρ∞(x) =C
[
µ(T (x))

T (x)1+4θ

] 1
2+4θ

, (27)

which is an inverse power of T unless µ(T ) is at least
quadratic in T .
Below, we consider in more detail the three simplest

cases, i.e., µ constant, µ linear in T and µ quadratic in T .
We stress that, even though these are the first three orders
of approximation, it might be necessary to consider more
complex situations in real applications because of the large
range over which T can vary.

µ(T ) constant. In the simplest case µ does not depend
on T , i.e., µ(T )≡ µ0 > 0, and the thermophoretic drift
term (25) becomes

A(x) =
kBT

′

12πRµ0(1+2θ)
. (28)
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Fig. 2: (Colour on-line) µ(T ) constant. (a) Thermophoretic
drift A(x) for various θ (dashed, dash-dotted and dotted
lines) in the presence of a temperature gradient (solid line).
(b) Corresponding theoretical steady-state distribution (lines)
are always peaked towards the cold side. The symbols repre-
sent the steady-states distributions resulting from Brownian
dynamics simulations.

We stress that in this case θ is independent of x. For
example, let us consider the temperature gradient (grey
solid line in fig. 2(a)). The associated thermophoretic drift
(eq. (28)) is presented in fig. 2(a) for three values of θ,
corresponding to the situations where the time correlation
of the coloured noise dominates (θ= 0, blue dashed line),
the time-scale of the particle inertia dominates (θ=
+∞, red dot-dashed line) and the two time-scales are
comparable (θ= 1, green dotted line). For all θ� 0 the
drift term has the same sign as T ′, thus imposing a drift
on the Brownian particle instantaneous flow towards the
hotter region. Equation (25) features two terms, one term
dependent on the frictional gradient and the second on the
coloured noise; for µ constant, since there is no frictional
gradient, the drift is only driven by coloured noise and the
resulting flow increases with decreasing θ.
If now the particles are allowed to interact repeatedly

with the boundaries, they will eventually reach their
stationary distribution, using eq. (24),

ρ∞(x)∝ T (x)−
1+4θ
2+4θ . (29)

As shown in fig. 2(b), the particles will accumulate towards
the areas of low temperature for all θ� 0, which is in
agreement with most experiments [6]. This result is in
striking contrast with the fact that the instantaneous
thermophoretic drift actually pushes the particles in the
opposite direction towards the hotter regions. Such a
difference between the instantaneous drift and the long-
term stationary distribution has also been observed in
systems at thermodynamic equilibrium [22–25].

µ(T ) linear. We now consider the case when µ(T )
is linear, i.e., µ(T (x)) = µ0+µ1∆T (x)> 0. Interestingly,
if µ1 > 0 (e.g., ref. [26]), A(x) changes sign at a critical
value of θ (eq. (26))

θc =
µ0

4µ1∆T
. (30)
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Fig. 3: (Colour on-line) Same as fig. 2 for µ(T ) linear. Note in
(a) the sign change of A(x) as θ crosses θc.

The resulting effective thermophoretic drift (25) is shown
in fig. 3(a) for the cases of θ= 0< θc, θ= 1> θc, and
θ=∞. In particular,

A(x) =
kBT

′µ0
12πR(µ0+µ1∆T )2

, for θ= 0 (31)

and

A(x) =− kBT
′µ1∆T

6πR(µ0+µ1∆T )2
, for θ→+∞, (32)

whose dependence on the thermal gradient clearly shows
opposite signs if µ1 > 0.
For the stationary distribution (fig. 3(b)),

ρ∞(x)∝
[
µ0∆T (x)

−(1+4θ)
+µ1∆T (x)

−4θ] 1
2+4θ

. (33)

For µ1 > 0 it is clear that ρ∞ will be an inverse power
of T (x). If µ1 < 0, since γ(x)> 0 for all x, then µ0 >
|µ1∆T (x)| and µ0∆T (x)−(1+4θ) > |µ1∆T (x)−4θ|. Thus ρ∞
will be an inverse power of temperature for all admissible
µ0, µ1. This suggests that the particle will more likely
be found in the colder regions. Interestingly, unlike the
expected drift, derived from eqs. (31), (32), there is no
qualitative change in behaviour at θc.

µ(T ) quadratic. We finally consider the case when
µ(T ) is quadratic in T , i.e., µ(T (x)) = µ0+µ1∆T (x)+
µ2∆T (x)

2. Again, A(x) changes sign at (eq. (26))

θc =
µ0−µ2∆T 2

4(µ1∆T +2µ2∆T
2)
, (34)

if µ0 >µ2∆T
2 and µ1∆T +2µ2∆T

2 > 0, or µ0 <µ2∆T
2

and µ1∆T +2µ2∆T
2 < 0. The resulting effective ther-

mophoretic drift (25) for the extreme cases is

A(x) =
kBT

′(µ0−µ2∆T 2)
12πR(µ0+µ1∆T +µ2∆T

2)2
, for θ= 0 (35)

and

A(x) =− kBT
′(µ1∆T +2µ2∆T 2)

6πR(µ0+µ1∆T +µ2∆T
2)2
, for θ→+∞,

(36)
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Fig. 4: (Colour on-line) Same as fig. 2 for µ(T ) quadratic. Note
in (b) the change of the distribution peak from cold to hot as
a function of θ.

whose dependence on the thermal gradient shows opposite
signs for µ0 >µ2∆T

2. In fig. 4(a), we study the case
µ0 <µ2∆T

2 and µ1∆T +2µ2∆T
2.

The stationary distribution is

ρ∞ ∝
[
µ0∆T

−(1+4θ)+µ1∆T−4θ +µ2∆T (1−4θ)
] 1
2+4θ

,

(37)
where it is clear that there are combinations of µ0, µ1
and µ2 for which the density will incur a transition from
peaking at colder regions to hotter, as shown in fig. 4(b).
This may lead to interesting behaviours as a function of
the temperature. For example, in ref. [27], DNA particles
(θ� 1) change from accumulating in colder regions when
the minimum temperature is T = 276K to accumulating
in warmer regions when a new minimum temperature
T = 293K and the gradient is left unchanged (2K between
the colder and warmer regions). In agreement with this
experiment we predict, for T = 276K, since, expanding
µ(T ) around T0 = 273, µ0+µ1∆T > µ2∆T

2, the station-
ary distribution ρ∞ (eq. (37)) peaks in colder regions
for all θ, and, for T = 293K, since µ2∆T

2 >µ0+µ1∆T ,
the stationary distribution peaks in hotter regions for
θ < 1/4, which is verified in this case. However, we note
that the model in this paper leads to a different explana-
tion than the one in ref. [27] and there may be numerous
other factors influencing thermophoresis including thermal
expansion of the fluid and convection.

Conclusions and outlook. – In this letter, we have
given a systematic analysis of a system with two short
time-scales: the time correlation of the coloured noise τ
and the inertial relaxation time σ. We have derived the
effective thermophoretic drift A(x) and the steady-state
probability distribution ρ∞(x) in the limit as these time-
scales go to zero. We have finally applied these results to
study the thermophoretic motion of a Brownian particle
in a temperature gradient, showing how, in agreement
with experiments, ρ∞(x) tends to be peaked towards the
colder region (positive thermophoresis), but can switch
to hotter regions (negative thermophoresis) under the
right conditions. As possible future lines of research, also
noises that are not OUP can be considered: these might
be particularly promising to model the effects of the

chemical interaction between a particle and a solvent, of
the viscoelasticity of the medium or of depletion forces
due, e.g., to polymers or small particles in the solution.
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