
Computers & Operations Research 40 (2013) 2991–2999
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05
http://d

n Corr
E-m
journal homepage: www.elsevier.com/locate/caor
Double bound method for solving the p-center location problem

Hatice Calik n, Barbaros C. Tansel
Bilkent University, Department of Industrial Engineering, 06800 Bilkent, Ankara, Turkey
a r t i c l e i n f o

Available online 19 July 2013

Keywords:
p-Center location
Multi-center location
Covering location
Minimax location
Set covering
48/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cor.2013.07.011

esponding author. Tel.: +90 3122903269.
ail addresses: calik@bilkent.edu.tr, hatice.calik
a b s t r a c t

We give a review of existing methods for solving the absolute and vertex restricted p-center problems on
networks and propose a new integer programming formulation, a tightened version of this formulation
and a new method based on successive restrictions of the new formulation. A specialization of the new
method with two-element restrictions obtains the optimal p-center solution by solving a series of simple
structured integer programs in recognition form. This specialization is called the double bound method.
A relaxation of the proposed formulation gives the tightest known lower bound in the literature
(obtained earlier by Elloumi et al., [1]). A polynomial time algorithm is presented to compute this bound.
New lower and upper bounds are proposed. Problems from the OR-Library [2] and TSPLIB [3] are solved
by the proposed algorithms with up to 3038 nodes. Previous computational results were restricted to
networks with at most 1817 nodes.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The p-center problem is a relatively well known facility loca-
tion problem that involves locating p identical facilities on a
network to minimize the maximum distance between demand
nodes and their closest facilities. The focus is on the minimization
of the worst case possible time spent on the way in providing
service. This sort of objective is more meaningful than total cost
objectives for problems with a time sensitive service structure.
A majority of the applications arise in emergency service locations
such as determining optimal locations of ambulances, fire stations
and police stations where the human life is at stake. There is also
an increased interest in p-center location and related location cover-
ing problems in the contexts of terror fighting, natural disasters and
human-caused disasters.

Our primary interest in the p-center problem is from a model-
ing and algorithmic perspective. We give a review of existing
approaches, propose a new formulation and a new method based
on this formulation. We obtain a new integer programming model
with larger linear programming (LP) bounds by tightening one set
of constraints in our model. Additionally, a semi-relaxation of our
proposed model gives the tightest lower bound obtained earlier by [1].
We give a polynomial time algorithm to compute the lower bound
by solving a finite number of linear programming problems of
polynomial size. The predominant approach in the literature is to
perform a bisection or binary search over an interval between
lower and upper bounds on the optimal value of the p-center
ll rights reserved.

@gmail.com (H. Calik).
problem and solves a sequence of set covering problems for each
selected value of cover radius. We differ from the set covering
approach in that we use restrictions of the proposed formulation
to converge to an optimal solution. While the restriction approach
is general enough to allow many variations as dependent on how
one chooses restrictions during the process, we focus on a
particularly simple restriction which we refer to as the double-
bound method. We evaluate the computational merits of the
proposed formulations and certain variants of the double bound
method using test problems from the OR-Library and TSPLIB. We
are able to solve some large problems that are reported unsolved
in the previous literature. We provide additional larger sized test
problems that have not been attempted previously. With the
proposed methodology, we are able to solve problems with up
to 3038 nodes.

Let G¼ ðV ; EÞ be an embedded network with vertex set
V ¼ fv1;…; vng and edge set E. The following definitions are like
in [4]. An edge with end vertices vi and vj in an embedded network
is the image ½vi; vj�≡Tijð½0;1�Þ of the unit interval ½0;1� in some
space S (e.g. the plane) under a continuous one-to-one mapping
Tij : ½0;1�-S with Tijð0Þ ¼ vi; Tijð1Þ ¼ vj. For any point x∈½vi; vj�,
denote by ½vi; x� and ½x; vj� the sub-edges defined by point x. Note
that ½vi; x�∩½x; vj� ¼ fxg while ½vi; x�∪½x; vj� ¼ ½vi; vj�. Let lij40 be a
length assigned to each edge ½vi; vj�∈E. For x∈½vi; vj�, the lengths of
sub-edges ½vi; x� and ½x; vj� are defined as λlij and ð1�λÞlij, respec-
tively, where λ is the unique real number λ∈½0;1� such that
x¼ TijðλÞ. We take G as a point set defined by the union of its
embedded edges. For any two points x; y∈G, define dðx; yÞ to be the
length of a shortest path between points x and y. For any positive
integer p, let Sp(G) be the set of all p-element subsets of G. For
X∈SpðGÞ and vi∈V , denote the elements of X by x1;…; xp and define

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.07.011&domain=pdf
mailto:calik@bilkent.edu.tr
mailto:hatice.calik@gmail.com
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://dx.doi.org/10.1016/j.cor.2013.07.011


H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–29992992
the closest distance between the point set X and vertex vi by
DðX; viÞ ¼minfdðx1; viÞ;…; dðxp; viÞg. For X∈SpðGÞ, define f ðXÞ ¼max
fDðX; viÞ : vi∈Vg. The absolute p-center problem is to find a point
set Xn∈SpðGÞ such that rpðGÞ ¼ f ðXnÞ≤f ðXÞ; ∀X∈SpðGÞ. We refer to Xn

in the foregoing definition as an absolute p-center and the optimal
value rp(G) as the p-radius of G. For any finite subset F of G with
jFj≥p, define Sp(F) to be the set of all p-element subsets of F. The
F-restricted p-center problem is to find a point set Xn∈SpðFÞ such
that f ðXnÞ≤f ðXÞ; ∀X∈SpðFÞ. If F¼V, the resulting problem is referred
to as the vertex restricted problem. Denote by p-C, p-VC and p-FC
the absolute, vertex restricted and F-restricted p-center problems,
respectively, and denote their optimal values (p-radii) by rp(G),
rp(V) and rp(F), respectively. In the sequel, the term “p-center
problem” refers to any of the aforementioned variants.

In the weighted version of the p-center problem, there is a
positive weight wi associated with each vertex vi∈V and the
definition of f(X) is revised as f ðXÞ ¼maxfwiDðX; viÞ : vi∈Vg. All of
the definitions in the previous paragraph apply just the same with
this definition of f ð�Þ.

Next, we give an r-cover problemwhich is closely related to the
p-center problem. Let N¼ f1;…;ng. For a fixed nonnegative real
number r, define C(r) to be the following optimization problem:
minfjXj : X⊂G and DðX; viÞ≤r; i∈Ng. This problem seeks to place the
minimum number of centers (facilities) on a network G such that
each vertex has at least one center within a distance of r. In the
weighted case, the distance constraints DðX; viÞ≤r; i∈N, in the
definition of C(r) are replaced by the weighted distance constraints
wiDðX; viÞ≤r; i∈N. For the vertex and F-restricted cases, the condi-
tion X⊂G is replaced by X⊂V and X⊂F , respectively, and the
resulting problems are referred to as VC(r) or FC(r), respectively.

In the next section we give a detailed review of the related
works on the p-center problem. In Section 3, we present our new
IP formulation and prove that this formulation solves the p-center
problem optimally. Additionally, we give a tightened version of our
formulation and the experimental results obtained from the
computational comparison of our formulations with the previous
formulations. In Section 4, we make a comparison between the LP
relaxations of our formulations and the previous formulations.
We present a lower bound that we obtain from our IP formulation
by relaxing the binary restriction on one set of variables. We prove
that this bound is equivalent to the tightest known lower bound in
the literature and provide a polynomial time algorithm to obtain
this bound. In addition to the relaxation bounds, we provide new
lower and upper bounds which can be obtained very quickly.
In Section 5, we first give the underlying idea of our method, and
then we give the general structure of our double bound algorithm,
which is a specialization of our solution method. We introduce six
variations of the double bound algorithm. Among the six varia-
tions, we select the one that requires least amount of time on the
average and give the computational results obtained from this
algorithm in Section 4. In Section 6, we give the experimental
results obtained from our algorithm. We solve problems from
OR-Library and TSPLIB in these experiments. Finally, we conclude
in Section 7.
2. Related work

The absolute 1-center problem is initially defined by Hakimi [5]
and solved using graphical methods by taking advantage of the
piecewise linearity of the function f(x) on any edge. Piecewise
linearity for the absolute 1-center problem has important con-
sequences for p41 as it leads to the existence of a finite point set
P⊂G such that there exists an absolute p-center Xn in SpðP∪VÞ. This
is initially observed by Minieka [6] and extended to the weighted
case by Kariv and Hakimi [7]. This property is generalized later by
Hooker et al. [8] to a more general setting. Points in P are referred
to as intersection points. A point x in G qualifies as an intersection
point if there exist two distinct vertices vr and vs such that x is the
unique point in its edge for which dðvr ; xÞ ¼ dðx; vsÞ. For the
weighted case, a point x in G qualifies as an intersection point if
there exist two distinct vertices vr and vs such that wrdðvr ; xÞ ¼
wsdðx; vsÞ and there exists a positive real number ε such that
maxfwrdðvr ; x′Þ;wsdðvs; x′Þg4wrdðvr ; xÞ for all points x′ for which
0odðx; x′Þoε. There are at most Oðn2Þ intersection points on any
given edge and Oðn2jEjÞ points on the entire network. Because the
absolute p-center problem reduces to a search over a finite subset
P∪V of G, we focus on the F-restricted problem where F is any
finite subset of G with F ¼ P∪V for p-C and F¼V for p-VC. Let
f j; j∈M≡f1;…;mg, be an enumeration of the points in F, with
m¼ jP∪V j for p-C and m¼n for p-VC.

The p-center problem is NP-hard for general networks [7] even
if the network G is planar with unit vertex weights, unit edge
lengths and with maximum vertex degree 3. Low order polyno-
mial time algorithms are available for tree networks [7,9–13].
A review of the early theory and algorithms for network location
problems, including the p-center problem, is given in [14,15] (see
also [16,17]). Various theoretical and algorithmic aspects of the
p-center problem for general and tree networks are discussed in
[18]. A concise review of the computational state of the art
including approximation methods is given in [1].

There are two IP formulations of the p-center problem in the
literature proposed by Daskin [17] and Elloumi et al. [1].

Daskin [17]'s formulation is for the vertex restricted case.
Define a binary variable yj with yj¼1 if a center is placed at vertex
vj and 0 otherwise. Define binary variables xij to be 1 if vi assigns to
a center placed at vj and 0 otherwise. The formulation of Daskin
[17], referred to as P1 in the sequel, is as follows:

ðP1Þ : min z ð1Þ

s:t: ∑
j∈N

dijxij≤z ∀i∈N ð2Þ

∑
j∈N

xij ¼ 1 ∀i∈N ð3Þ

xij≤yj ∀i; j∈N ð4Þ

∑
j∈N

yj≤p ð5Þ

yj∈f0;1g ∀j∈N ð6Þ

xij∈f0;1g ∀i; j∈N: ð7Þ
Constraints (3) assign each vertex to exactly one center and
(1) and (2) ensure that the objective value is no less than the
maximum vertex-to-center distance. Constraints (4) ensure that
no vertex assigns to vj unless there is a center at vj. Constraint (5)
restricts the number of centers to p. Constraints (6) and (7) are the
binary restrictions. We may extend Daskin [17]'s formulation to
p-FC by replacing “j∈N” with “j∈M”.

The second IP formulation is due to Elloumi et al. [1]. Their
formulation is for p-FC and is similar to a canonical representation
of the simple plant location problems given earlier by Cornuéjols
et al. [19]. Let ρ1oρ2o⋯oρK be an ordering of the distinct
distance values of the n by m matrix of distances dij≡dðvi; f jÞ.
Define yj to be the same as in P1 and the additional binary
variables uk, k¼2,…,K, with uk¼0 only if all vertices can be
covered within a radius value of ρk�1 and uk¼1 otherwise. Denote
by P2 the formulation of Elloumi et al. [1] given below:

ðP2Þ : min ρ1 þ ∑
K

k ¼ 2
ðρk�ρk�1Þuk ð8Þ



H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–2999 2993
s:t: ∑
j∈M

yj≥1 ð9Þ

∑
j∈M

yj≤p ð10Þ

uk þ ∑
j:dij oρk

yj≥1 ∀i∈N; k¼ 2;…;K ð11Þ

yj∈f0;1g ∀j∈M ð12Þ

uk∈f0;1g; k¼ 2;…;K: ð13Þ
Constraint (9) is required to eliminate null solutions (with no
center). Constraint (10) is the same as constraint (5). Constraints
(11) and the objective function (8) ensure that all vertices are
covered by their closest centers.

Existing solution methods are either based on solving a
sequence of set covering problems or enumerating p-element
subsets of F. For fixed r40, the set covering problem is the
problem of minimizing ∑m

j ¼ 1yj subject to Ay≥1; y∈f0;1gm where
A¼ ½aij� is an n by m matrix of zeros and ones with aij ¼ 1 if
dðvi; f jÞ≤r and aij ¼ 0 if dðvi; f jÞ4r. Denote the set covering problem
by SC(r). Note that SC(r) is the traditional way of solving the
r-cover problem C(r).

The first set-covering based approach is proposed by Minieka
[6] for p-C. Minieka [6] presented a systematic method to update
the set covering matrix to converge to an optimal solution in a
finite number of steps. His updating method takes advantage of
the fact that the distances dij (i∈N; j∈M) are the only possible
values for rp(F). This leads to an updating of A that corresponds to
successive reductions of r over the list of distinct distance values.
Christofides and Viola [20] solved the weighted problem by first
generating regions in the network reachable by at least one vertex
within a radius of r and solving a set covering problem that selects
the fewest number of points from these regions. This approach is
the same as the set covering approach but does not make use of
the finite dominating set P∪V . Toregas et al. [21] solved p-VC by
solving a linear programming relaxation of the associated set
covering problem and adding a cut in case of fractional solutions.
Garfinkel et al. [22] solved a sequence of set covering problems but
they first reduced the search space by finding a heuristic solution
X and eliminating from F all those points whose relative radii are
greater than f(X). Daskin [17] gives the first IP formulation (P1
above) of p-VC but prefers to use a set covering based bisection
search over an interval defined by pre-computed lower and upper
bounds on rp(V). Daskin [23] improves this algorithm by solving,
via Lagrangian relaxation, a maximal covering location problem in
which the total number of vertices that are covered within r is
maximized while the number of open facilities is restricted to
p. Ilhan and Pinar [24] propose a two phase extension of Daskin
[17]'s algorithm for the vertex restricted problem. In the first
phase, several LP relaxations of the set covering problem are
solved as feasibility problems with the addition of the constraint
∑j∈Myj≤p to find an appropriate lower bound on rp(V). In the
second phase, several set covering problems with the additional
constraint ∑j∈Myj≤p are solved by systematically changing the
objective value starting from this lower bound. Al-khedhairi and
Salhi [25] propose some modifications to the algorithms of Daskin
[17] and Ilhan and Pinar [24]. Elloumi et al. [1] propose a different
IP formulation (P2 above) for p-FC. They give a lower bound which
is tighter than the LP relaxations of P1 and P2 and a polynomial
time method to compute it via a sequence of LPs. They solve p-FC
by performing a binary search over the ordered list of distinct
values of distances that are between their proposed lower and
upper bounds. A set covering problem is solved for each selected
distance value between the bounds. They solve problems from the
OR-Library and TSPLIB with up to 1817 nodes using binary search. To
our knowledge, this is the largest network size solved previously.

We note here that the term “bisection search” refers to
successively halving a real interval and discarding either the lower
or the upper half in each step until its size is smaller than a
predetermined positive real number whereas the term “binary
search” refers to performing essentially the same operation on a
finite list of numbers using a median element of the list.
3. Proposed formulation (P3)

We now propose a new formulation of p-FC. Define R¼ fρ1;
ρ2;…; ρK g with ρ1oρ2o⋯oρK as defined earlier. Exactly one of
these values determines the value of rp(F). Associate a binary
variable zk with ρk, k∈T≡f1;…;Kg with zk¼1 if rpðFÞ ¼ ρk and 0 if
not. For i∈N; j∈M and k∈T , define the parameters aijk ¼ 1 if dij≤ρk
and 0 otherwise. We use the variables yj as before; that is, yj¼1 if a
center is placed at site fj and 0 otherwise. The proposed formula-
tion, referred to as P3, is as follows:

ðP3Þ : min ∑
k∈T

ρkzk ð14Þ

s:t: ∑
j∈M

aijkyj≥zk ∀i∈N; ∀k∈T ð15Þ

∑
j∈M

yj≤p ð16Þ

∑
k∈T

zk ¼ 1 ð17Þ

yj∈f0;1g ∀j∈M ð18Þ

zk∈f0;1g ∀k∈T : ð19Þ
Constraint (17) ensures that exactly one of the variables zk is
selected as 1 and the objective function (14) determines the value
of rp(F) as the corresponding value ρk. Constraints (15) ensure that
each vertex is covered within the selected radius by at least one
center. Constraint (16) restricts the number of centers to at most p.
Constraints (18) and (19) are binary restrictions.

For any feasible solution (y, z) of P3, we can obtain a feasible
solution (y, u) for P2, which provides exactly the same objective
value, by setting

uk ¼ ∑
K

q ¼ k
zq; k¼ 2;…;K : ð20Þ

The reverse can also be achieved by using

zk ¼ uk�ukþ1; k¼ 2;…;K�1;

zK ¼ uK ;

z1 ¼ 1�u2: ð21Þ
By using this relationship, we can obtain a tighter constraint and
replace it with (15). When we consider all distinct distance values
in the increasing order, (11) implies uk þ∑j:dij≤ρk�1

yj≥1; ∀i∈N;
k¼ 2;…;K . Replacing uk with ∑K

q ¼ kzq and right hand side with
∑K

q ¼ 1zq we obtain ∑j:dij≤ρk yj≥∑
k
q ¼ 1zq; ∀i∈N; k¼ 1;…;K�1. For

k¼ K ;∑j:dij≤ρk yj ¼∑j∈Myj≥1. Then we can replace (15) with

∑
j∈M

aijkyj≥ ∑
k

q ¼ 1
zq; ∀i∈N; ∀k∈T : ð22Þ

The new formulation, referred to as (P4), with the tightened
constraints is basically as follows:

ðP4Þ : min ð14Þ
s:t: ð16Þ–ð19Þ; and ð22Þ:



H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–29992994
P3 and P4 have mþ K binary variables and nK þ 2 constraints. P2
has mþ K�1 binary variables and nðK�1Þ þ 2 constraints. On
the other hand, P1 (as adapted to p-FC) has one real variable,
mþmn binary variables and 2nþmnþ 1 constraints. Since K is
at most mn, P2, P3 and P4 have O(mn) binary variables and
Oðmn2Þ constraints, which is O(n) times more than the number
of constraints of P1.

While P1 is a more compact formulation of p-FC than P2, P3
and P4, the computational performances of P2, P3 and P4 are far
better than that of P1 when all four formulations are directly
solved by a commercial solver. Table 1 gives a comparison of
solution times and optimal or best-found objective values for P1,
P2, P3 and P4 for the vertex restricted case using 40 p-median
instances taken from the OR-Library. These instances are solved for
each of the formulations using IBM ILOG CPLEX 12.4 [26] concert
technology with MIPEmphasis option of CPLEX set equal to 1. The
possible values of rp(V) in R that are needed in P2, P3 and P4 are
restricted to a subset R′≡R∩½LB2;UB2� where LB2 and UB2 are
proposed lower and upper bounds on rp(F) (see Section 4). In this
table, columns 5, 6, 7 and 8 give the solution times in seconds
taken by the solver for the IP models P4, P3, P2 and P1,
respectively. While solving the three IP models, we put a time
restriction of 3 h. P2, P3 and P4 can solve each problem optimally
within the 3 h limit while P1 cannot solve 17 of these problems
Table 1
Solving times (s) of IP models.

Instance n p Opt P4 time P

pmed1 100 5 127 11.33
pmed2 100 10 98 7.02
pmed3 100 10 93 5.26
pmed4 100 20 74 1.30
pmed5 100 33 48 1.08
pmed6 200 5 84 11.50
pmed7 200 10 64 26.89
pmed8 200 20 55 12.74
pmed9 200 40 37 4.71
pmed10 200 67 20 0.62
pmed11 300 5 59 9.09
pmed12 300 10 51 34.74
pmed13 300 30 36 16.05
pmed14 300 60 26 5.60
pmed15 300 100 18 1.33
pmed16 400 5 47 5.76
pmed17 400 10 39 45.21
pmed18 400 40 28 71.64
pmed19 400 80 18 4.91
pmed20 400 133 13 1.33
pmed21 500 5 40 12.36
pmed22 500 10 38 239.84
pmed23 500 50 22 185.59
pmed24 500 100 15 10.33
pmed25 500 167 11 1.61
pmed26 600 5 38 32.64
pmed27 600 10 32 95.41
pmed28 600 60 18 180.21
pmed29 600 120 13 19.19
pmed30 600 200 9 1.25
pmed31 700 5 30 19.75
pmed32 700 10 29 351.59
pmed33 700 70 15 177.61
pmed34 700 140 11 22.98
pmed35 800 5 30 18.38
pmed36 800 10 27 358.30
pmed37 800 80 15 186.11
pmed38 900 5 29 17.64
pmed39 900 10 23 772.68 1
pmed40 900 90 13 308.41

Average 82.25
optimally. Of the 17 unsolved instances, 5 of them are instances for
which no feasible integer solution can be found by P1 within the
3 h limit. These are indicated by NFS (No Feasible Solution) in the
middle column under P1 in the table. For the 12 instances that are
solved sub-optimally by P1, the last column under P1 gives the
percent gap reported by CPLEX. When we compare P2, P3 and P4
with each other, we see that the largest time required is 772.68 s
for P4 (instance pmed39) while it is 1232.92 s for P3 (instance
pmed39) and 1428.94 s for P2 (instance pmed8). The average time
required to solve 40 instances with P4 is 82.25 s while it is 99.80 s
for P3 and 155.25 s for P2. The differences in computational times
are more significant in some instances. For example, P3 solves
pmed8 in 10.31 s and P4 solves the same instance in 12.74 s while
P2 solves it in 1428.94 s, which is more than 138 times that of P3
and 112 times that of P4. Among 40 instances, for 7 of them P2
achieves the smallest solving time while P3 is the successor for 22
of them and P4 is the successor for 11 of them. We may conclude
from these observations that the proposed model P3 and its
tightened version P4 perform noticeably better than P2 on the
40 p-median instances taken from OR-Library and that P2, P3 and
P4 perform significantly better than P1. While direct solution
times are reasonable for P2, P3 and P4, the double bound
algorithms that we give in Section 5 lead to much shorter solution
times than direct solution times available in this table.
3 time P2 time P1

Time Obj Gap%

4.38 52.78 188.81 127
2.00 12.94 73.34 98
1.90 7.72 37.89 93
0.21 8.35 0.90 74
0.26 1.45 0.39 48

15.81 33.50 2797.12 84
16.67 96.79 4476.78 64
10.31 1428.94 776.21 55
0.68 3.57 6.40 37
0.13 0.34 1.40 20

15.08 14.01 537.31 59
38.42 28.93 7115.81 51
19.83 42.15 3188.15 36
2.19 4.92 281.05 26
0.29 0.81 3.82 18
4.18 33.91 10 800.00 47 6.78

50.32 38.33 10 800.00 41 14.63
48.98 55.39 10 539.49 28
2.24 5.43 33.34 18
0.28 0.75 3.79 13
17.95 35.65 10 800.00 43 16.28

373.73 1223.58 10 800.00 41 18.37
54.86 129.87 10 800.00 24 16.67
3.46 4.78 439.70 15
0.26 0.73 17.13 11

72.78 57.96 10 800.00 39 10.26
295.62 201.31 10 800.00 40 25.00
75.00 46.47 10 800.00 20 19.72
7.24 12.28 1976.99 13
0.31 0.70 5.29 9

15.70 34.13 10 800.00 NFS
407.49 949.57 10 800.00 38 32.89
180.43 213.66 10 800.00 17 17.46

6.91 7.59 3159.30 11
14.53 14.25 10 800.00 NFS

414.04 227.85 10 800.00 NFS
268.12 154.61 10 800.00 25 47.64
20.63 19.53 10 800.00 NFS

232.82 837.51 10 800.00 NFS
295.98 167.11 10 800.00 20 40.00

99.80 155.25 5481.51



H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–2999 2995
4. Relaxation and heuristic bounds

Before solving P3, if we know that there exists a set S⊂R such that
the optimal value of the p-center problem is different from any ρj∈S,
we can effectively use this information: we remove these values from
R and drop associated zj variables from the model, thus, decrease the
size of the problem to be solved. For example, if we have a lower
bound LB on the optimal objective value, then we may remove any
ρjoLB from R; similarly, if we have an upper bound UB, then we may
remove any ρj4UB and solve the model with the restricted R and
obtain an optimal solution. In this section, we first analyze the LP
relaxation bounds of the four models discussed in this paper. Then,
we propose a tighter bound obtained from a partial relaxation of our
formulation P3. In addition to the lower bounds that we obtain from
relaxations, we propose new lower and upper bounds that can be
obtained in a matter of time.

4.1. LP relaxations

Let LP1, LP2, LP3 and LP4 denote the LP relaxations of P1, P2, P3
and P4, respectively and valðLP1Þ; valðLP2Þ; valðLP3Þ and valðLP4Þ
denote their optimal values. Elloumi et al. [1] showed that the LP
bound of P2 is as good as the LP bound of P1. From (20) and (21)
we know that there is a one-to-one correspondence between the
feasible solutions of P2 and P4. Obviously, this is valid for also the
LP relaxations of P2 and P4, that is, for any feasible solution (y, u)
of P2, there is a corresponding feasible solution (y, z) of P4 with
the same objective value and vice versa. Therefore, the LP bounds
of P2 and P4 are equivalent and they are as good as the LP bound
of P1. Since any feasible solution to the LP4 is also feasible for the
LP3, valðLP3Þ≤valðLP4Þ. However, the reverse might not be true and
we are able to find problems that support otherwise. On the other
hand, the LP bounds of P1 and P3 are not comparable.

4.2. Semi-relaxations

Lower bounds based on LP relaxations of the set covering
problem are generated for various values of r used in a bisection
search by the algorithm of Ilhan and Pinar [24]. Elloumi et al. [1]
propose a lower bound LBn which is tighter than the LP relaxation
bounds of P1 and P2. LBn is obtained from P2 by relaxing the
integrality restrictions on the variables yj; j∈M, while retaining all
other constraints of P2. LBn requires solving a mixed integer program,
but Elloumi et al. [1] additionally give a method to compute LBn that
requires solving a polynomial number of linear programming pro-
blems of polynomial size.

We propose now a relaxation bound based on P3 and prove
that this bound is equal to the tightest known bound (the bound
LBn of Elloumi et al. [1]). Let RP2, RP3 and RP4 be the relaxations
that retain the objective function and all constraints of P2, P3 and P4,
respectively, except that the constraints yj∈f0;1g; j∈M, are replaced
with the constraints yj≥0; j∈M. LBn is exactly defined as the optimal
value of RP2. Let valðRP3Þ and valðRP4Þ be the optimal values of RP3
and RP4, respectively. The equivalence of LBn and valðRP4Þ is obvious
and can be proven with arguments similar to those in Section 3.
Moreover, one can directly see that valðRP3Þ≤valðRP4Þ since any (y, z)
that satisfies (22) satisfies (15) as well. To prove that valðRP4Þ≤
valðRP3Þ, let us consider an optimal solution ðy; zÞ for RP3 with
valðRP3Þ ¼ ρk′. Then zk′ ¼ 1 and zk ¼ 0 for k≠k′. In this case,
∑k

q ¼ 1zq ¼ 0 for kok′ and ∑k
q ¼ 1zq ¼ 1 for k≥k′. Since ∑j∈M

aijkyj≥∑j∈Maijk′yj≥1; ∀i∈N; k4k′, ðy; zÞ is feasible for RP4 and this
implies that valðRP4Þ≤valðRP3Þ. Thus, we can conclude that
valðRP3Þ ¼ valðRP4Þ ¼ LBn.

A direct computation of the proposed lower bound requires
solving a mixed integer linear program, RP3, with K binary variables.
We now give an alternative method which works in polynomial time.
For fixed h∈T , add the single constraint zh¼1 to problems P3 and
RP3 and call the resulting problems Ph and RPh, respectively. Let
valðPhÞ and valðRPhÞ be the optimal values of Ph and RPh, respectively.
In case of infeasibility, valð�Þ is taken to be 1.

Proposition 1. valðRP3Þ ¼minh∈TvalðRPhÞ.

proof. We have valðRP3Þ≤valðRPhÞ;∀h∈T , since RPh is a restriction
of RP3. Now, we show that equality is achieved by some h∈T . Let
valðRP3Þ be ρa for some a∈T . Then there is an optimal solution
ðy′; z′Þ to RP3 such that zk′¼ 1 for k¼a and zk′¼ 0 for k∈T\fag. This
implies that ðy′; z′Þ is a feasible solution to RPa and its objective
value is ρa. Hence, valðRPaÞ≤ρa due to the feasibility of ðy′; z′Þ to RPa.
We also have ρa ¼ valðRP3Þ≤valðRPaÞ from the first line in the proof.
Hence, valðRP3Þ ¼ valðRPaÞ ¼minh∈TvalðRPhÞ. □

A closer examination of RPh shows that it is a linear program in
recognition form. To justify this, consider first the problem Ph.
Since Ph has all constraints of P3 plus the new constraint zh¼1,
constraint (17) and zh¼1 imply that zk ¼ 0; ∀k∈T\fhg in every
feasible solution. With zh¼1 and zk¼0 for k∈T\fhg, constraints
(17) and (19) become redundant and can be dropped. Substituting
the values of the z-variables in (14) results in a constant objective
value of ρh. Substituting zk¼0 for k∈T\fhg in constraints (15) makes
all constraints in (15) redundant except those corresponding to
i∈N and k¼h. It follows that Ph is the following integer program in
recognition form: Find y∈f0;1gm, if it exists, such that

∑
j∈M

aijhyj≥1 ∀i∈N; ð23Þ

∑
j∈M

yj≤p: ð24Þ

RPh is obtained from Ph by relaxing the binary restriction on y
and replacing it with yj≥0; j∈M. Hence, RPh is the following LP in
recognition form: Find y∈Rm, if it exists, such that y≥0 and y
satisfies (23) and (24).

To compute valðRP3Þ, it suffices to compute minh∈TvalðRPhÞ. This
is achieved in polynomial time by solving Oð log2 KÞ linear pro-
grams RPh for each ρh selected from R during a binary search. The
binary search is as follows. Let R be the ordered list of ρ1oρ2o
⋯oρK as defined before.

Algorithm BINARY. .
Initial: Set min¼ 1;max¼ K and LB¼1
Main:

(1) Set mid¼ ⌊ðminþmaxÞ=2⌋.

(2) Solve RPmid.

(3) If RPmid is infeasible, set min¼mid; else, set max¼mid

and LB¼ ρmid.

(4) If max�min≥1, go to (1); else, go to Termination.

Termination: Stop with the lower bound valðRP3Þ ¼ LB.

We solve RP2, RP3 and RP4 on 40 p-median instances from the
OR-Library with R restricted to R∩½LB2;UB2�. We observe that in 36
of these instances, the bound valðRP3Þ is equal to the optimal value
of P3, referred to as valðP3Þ, while 4 of them have lower bounds
with deviations of at most 4.72% from valðP3Þ.

4.3. Attaining quick lower and upper bounds

We propose two upper bounds UB1 and UB2 and two lower
bounds LB1 and LB2 to restrict R. We obtain UB1 from the
following 2-approximation algorithm for the p-center problem
with p≥2. The algorithm constructs a set X⊂V of centers with
jXj ¼ p and allocates each vertex to its closest center. In order to
construct X, the two most distant vertices in the network are
initially added to the set. While X has less than p elements, the



Table 2
Selection of radius values.

(a; b) Together Separately

a¼ ⌊ðmaxþminÞ=2⌋ DB1 DBR1

H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–29992996
vertex that is most distant to X is added to the set. After allocating
each vertex to the closest center in X, we obtain a feasible solution
to the p-center problem. The objective value of this solution is no
more than two times the optimal solution value [27]. We refer to
this objective value as UB1.

We obtain UB2 by making an improvement on the above
algorithm. Let fx1;…; xpg be the set of centers selected. We divide
the network into p clusters I1;…; Ip where Ij is the set of vertices
allocated to center xi (break ties arbitrarily). Let Ti ¼maxfdðxi; vjÞ :
j∈Iig for i∈f1;…; pg. Then the objective value of the current solution
is Tmax ¼maxi ¼ 1;…;pTi. In order to improve the obtained solution,
we solve a 1-center problem in each of these clusters. We start
with cluster Ii, where Ti ¼ Tmax and obtain a new radius value
T i≤Ti. If T i ¼ Ti, we stop the algorithm. If T ioTi, we set Tmax ¼ T i.
Then we solve a 1-center problem for each remaining cluster Ik if
Tk4Tmax and set Tmax ¼ T k if T k4Tmax. Obviously, we will have a
solution which is no worse than the initial one after this improve-
ment procedure. Thus, we can conclude that our algorithm is a
2-approximation algorithm. We refer to this solution value as UB2.

LB1 is obtained as follows: Suppose we sort positive distance
values in non-decreasing order as β1≤β2≤⋯≤βn�ðn�1Þ (ties are
allowed in the sequence) and let X ¼ fv1; v2;…; vpg⊂V be an
optimal p-center. Then the remaining n�p vertices need to be
served by these centers. Even if we assume that each vertex is
served by its closest center, the maximum of the closest distance
values cannot be smaller than βn�p since valðP3Þ ¼maxi∉X minvj∈X

divj≥βn�p. We refer to this lower bound as LB1.
LB2 is obtained from UB1: Since UB1 is less than or equal to two

times the optimal value, (UB1)/2 provides a lower bound on the
optimal value. We improve this lower bound one more step and
select the smallest distance value in R, which is greater than or
equal to (UB1)/2, as a lower bound (LB2) for the p-center problem.

We compute the LB1, LB2, UB1 and UB2 values for the 40
p-median instances. When we compare the values and calculation
times of UB1 and UB2, we see that in 23 of these instances, UB2 value
is smaller than UB1 value. This means that the improvement stage is
helpful in obtaining a solution with better objective in these
instances. In the other instances, the improvement stage is not able
to find a solution with a smaller objective value; thus, UB2 value
equals UB1 value. When the values of LB1 and LB2 are compared, we
observe that LB2 value is larger than LB1 value for each instance.
Each of these lower and upper bounds is obtained in at most 0.06 s,
which is much faster than the calculation times of any relaxation
bound discussed. When we compare LB2 with valðLP4Þ and valðRP3Þ,
we see that LB2 and valðLP4Þ values are quite close to each other and
valðRP3Þ is greater than both of them for each instance. Since we can
obtain LB2 values very quickly, we decide to use LB2 and UB2 values
to restrict the set R when we make experiments with the proposed
model P3 and double bound algorithms.

5. Double bound algorithms

Let S be any nonempty subset of T ¼ f1;…;Kg and define P(S) to
be the problem which is exactly the same as P3 except that all
variables zk; k∈T\S, are dropped from P3. This amounts to repla-
cing the index set T in (14)–(19) with the index set S. Let valðPðSÞÞ
be the optimal value of P(S) with PðSÞ ¼1 if P(S) is infeasible.

Proposition 2. Suppose jSj42. Let a and b be the smallest and
largest indices in S, respectively.
b¼max

a¼ ⌊ðmaxþminÞ=2⌋ DB2 DBR2
b¼max�1
(a)
 If valðPðSÞÞ ¼ ρa, then rpðFÞ∈fρ1;…; ρag.
(b)

a¼minþ ⌊ðmax�minÞ=3⌋ DB3 DBR3
b¼minþ 2⌊ðmax�minÞ=3⌋
If valðPðSÞÞ ¼ ρk for some k with aok≤b, then rpðFÞ∈fρk′þ1;…; ρkg
where k′ is the largest index in S which is smaller than k.
(c)
 If valðPðSÞÞ ¼1, then rpðFÞ∈fρbþ1;…; ρKg.
Proof. Since S is a subset of T, P(S) is a restriction of P3. Hence,
valðP3Þ≤valðPðSÞÞ. We have rpðFÞ ¼ valðP3Þ from Proposition 1

implying that rpðFÞ≤ρa if (a) holds. This proves (a). To prove (b),
observe that valðPðSÞÞ ¼ ρk and k4a imply that Pk is feasible while
Pk′ is infeasible. Accordingly, ρk′orpðFÞ≤ρk which gives rpðFÞ∈
fρk′þ1;…; ρkg. To prove (c), observe that valðPðSÞÞ ¼1 implies that
Pb is infeasible. Hence, rpðFÞ∈fρbþ1;…; ρK g. □

This proposition allows devising a search strategy based on the
restrictions of P3. The main idea is this: select a nonempty subset S
of T and solve P(S). Depending on which of (a), (b) or (c) occurs in
Proposition 2, delete from T the set of indices k such that ρk cannot
equal rp(F). Select a new subset S of T after deletions and repeat the
procedure. Termination occurs when T reduces to a singleton. The
computational success of such a procedure depends on how
efficiently we solve each subproblem, P(S), as well as how many
times we have to solve a new problem. We give below a specia-
lized way of doing this with sets S containing two elements. The
method is called the double bound method. Six variations are
discussed.

The double bound algorithm solves P(S) for S¼ fa; bg where
a; b∈T with aob. Let T1 ¼ f1;…; ag; T2 ¼ faþ 1;…; bg and T3 ¼ fbþ
1;…;Kg. We may solve P(S) directly or solve Pa and Pb separately.
The former problem involves mþ 2 binary variables while each of
the latter problems involves m binary variables. After solving P(S),
we know which one of the subsets T1; T2 and T3 contains rp(F).
Since we do not need to consider two of these subsets anymore,
we repeat the procedure with the subset that contains the optimal
value until we have a single element subset on hand. We propose
three ways to choose a and b in Table 2. For each choice, we give
two types of algorithms, one type solving P(S) directly (referred to
as DB algorithms) and the other solving Pa and Pb separately to
obtain a solution to P(S) (referred to as DBR algorithms). The initial
steps and the terminations of the algorithms are the same. The
algorithms work with the ordered list R¼ fρ1;…; ρKg. We provide a
general scheme of the double bound algorithm in Fig. 1.

In the worst case, DB1, DBR1, DB2 and DBR2 algorithms terminate
in Oð log2 TÞ iterations and DB3, DBR3 algorithms terminate in
Oð log3 TÞ iterations. Suppose we are at the beginning of some
iteration of our DB2 algorithm and we have an a value and a max
value. Then we solve P(S) for S¼ fa;max�1g. If rp(F) equals ρmax of
this iteration, then P(S) becomes infeasible and we terminate the
algorithm at the end of this iteration. This quick termination is also
available in DBR2 algorithm. In DB1 algorithm, we solve P(S) for
S¼ fa;maxg. If rp(F) equals ρmax of the current iteration, we cannot
know this until we solve P(S) for S¼ fmax�1; max g and this takes
Oð log2ðmax�aÞÞ iterations. This is also valid for DBR1 algorithm. In
the same case, DB3 and DBR3 algorithms terminate after Oð log3
ðmax�bÞÞ iterations.
6. Computational experiments

In our computational experiments, we follow the general
trends in the literature and take F¼V with unit weights for



Fig. 1. General scheme of the double bound algorithm.

Table 3
Times (s) required to solve P3 with DBR2 algorithm on 40 p-median instances.

Instance n p Opt LB2 UB2 Time

pmed1 100 5 127 101 191 0.54
pmed2 100 10 98 83 155 0.23
pmed3 100 10 93 73 143 0.21
pmed4 100 20 74 56 92 0.13
pmed5 100 33 48 38 75 0.12
pmed6 200 5 84 69 107 0.32
pmed7 200 10 64 51 102 0.18
pmed8 200 20 55 42 83 0.19
pmed9 200 40 37 27 53 0.20
pmed10 200 67 20 16 31 0.10
pmed11 300 5 59 49 69 0.54
pmed12 300 10 51 46 76 0.32
pmed13 300 30 36 30 55 0.30
pmed14 300 60 26 20 39 0.15
pmed15 300 100 18 12 24 0.07
pmed16 400 5 47 43 56 0.55
pmed17 400 10 39 35 57 0.33
pmed18 400 40 28 23 46 0.17
pmed19 400 80 18 15 27 0.11
pmed20 400 133 13 9 18 0.05
pmed21 500 5 40 36 49 0.95
pmed22 500 10 38 32 54 1.08
pmed23 500 50 22 18 35 0.31
pmed24 500 100 15 12 23 0.14
pmed25 500 167 11 8 15 0.07
pmed26 600 5 38 33 52 1.61
pmed27 600 10 32 29 46 0.94
pmed28 600 60 18 15 29 0.29
pmed29 600 120 13 11 21 0.18
pmed30 600 200 9 7 13 0.08
pmed31 700 5 30 27 36 2.03
pmed32 700 10 29 25 38 2.35
pmed33 700 70 15 13 25 0.33
pmed34 700 140 11 9 17 0.15
pmed35 800 5 30 27 34 1.69
pmed36 800 10 27 25 36 2.71
pmed37 800 80 15 13 26 0.40
pmed38 900 5 29 26 32 2.55
pmed39 900 10 23 20 30 2.59
pmed40 900 90 13 11 21 0.61

Average 0.65

H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–2999 2997
vertices. The input data used for the computations consists of the
p-median data from OR-Library for 40 instances with n varying
between 100 and 900 and p varying between 5 and ðn=3Þ and
some instances from TSPLIB. The original data in OR-Library
consists of a listing of edges and their lengths. By using the all-
pair shortest path algorithm due to Floyd [28] on this data, we
obtain the distance matrix D¼ ½dij�. In TSPLIB instances, the
coordinates of vertices are provided. We calculate the Euclidean
distance for each vertex pair and round it to the nearest integer.
We solve problems from u1817 with n¼1817, from d15112 with
n¼2500 and from pcb3038 with n¼3038. During our computa-
tions we use JCreator LE 4.50 [29] and CPLEX 12.4 concert
technology. In all mathematical models that we solve, we set
MIPEmphasis option of CPLEX to 1. For the algorithms DBR1, DBR2
and DBR3, we additionally set IntSolLim to 1.

In all tables in this section, the first three columns give the
characteristics of the instances and the column labeled “Opt” gives
the optimal p-radii. The reported solution times in tables are in
seconds.

The experiments that we conducted on the problems with large
number of nodes revealed that the DB algorithms require sig-
nificantly more time to arrive at optimal solutions than DBR
algorithms and among the DBR algorithms, DBR2 algorithm
performed slightly better than the other algorithms. For this
reason, we give the results only for DBR2 algorithm in this paper.
One can see the detailed results of the other algorithms in [30].

We give the solution times of DBR2 algorithm on 40 p-median
instances in Table 3. In these experiments, we continue to restrict
R to R∩½LB2;UB2� and give LB2 and UB2 values in the fifth and sixth
columns, respectively. The last column presents the time required
by DBR2 algorithm. The first observation from this table is that the
DBR2 performs much better than solving P3 or P4 directly. The
solution times of DBR2 algorithm are much better for all instances
than direct solution times. The average solution time of DBR2
algorithm is also much better than solving P3 or P4 directly.

Table 4 gives the solution times for DBR2 algorithm on 20
instances from TSP-Library with n¼1817. We again restrict R by
using LB2 and UB2 values in these experiments and these values
are given in the fifth and sixth columns, respectively. The solution
time of the algorithm is given in the last column. For the bold
instances in this table, the optimal values are provided for the first
time in the literature. Elloumi et al. [1] conduct experiments on
the first 15 instances of this table, but they are not able to solve
optimally the bold instances. The algorithm spends an excessive
amount of time for solving the problem with p¼90. On the
average, DBR2 spends 563.74 s to solve these instances.

We solve larger problems with n∈f1817;2500;3008g from the
TSPLIB by using the lower bound valðRP3Þ. We compute this bound
by solving Oð log2 KÞ LP problems RPh using the algorithm BINARY
with R restricted to R∩½LB2;UB2�. The bounds valðRP3Þ are gen-
erally computed in a matter of seconds. The minimum, average
and maximum computing times are 0.59, 33.16 and 166 s, respec-
tively. We also note that the lower bound valðRP3Þ is equal to the
optimal value of P3 for 8 instances of the TSPLIB problems with
n∈f1817;2500;3008g while the gap between them is at most
0.053 for the remaining instances.

Table 5 gives the relevant statistics for solving P3 via the
algorithm DBR2 by restricting R to R∩½valðRP3Þ;UB2�. For the 33
instances reported in Table 5, a time limit of 3 h is imposed for
each problem Ph∈fPmid; Pmax�1g attempted in main steps of the
algorithm DBR2. At the end of 3 h, either a solution is found for Ph
or the infeasibility of Ph is detected or the feasibility/infeasibility
status of Ph remains unknown. If the status of Ph remains unknown,
we solve the problems Phþ1; Phþ2, etc. with successively increasing
radius values until a feasible solution is found within 3 h for some
problem Phþk. This gives us an upper bound ρhþk on rp(F) that is the
best (smallest) bound that can be confirmed within the time limit.
Similarly, we solve problems Ph�1; Ph�2, etc. with successively
decreasing radius values until we detect infeasibility of some Ph�k′
within the time limit. This gives us a lower bound ρh�k′þ1 on rp(F)
that is the largest possible that can be confirmed within the time
limit. Thus, rpðFÞ∈fρh�k′þ1;…; ρhþkg. The values ρh�k′þ1 and ρhþk are
reported as the “Best LB” and “Best UB” in the table in columns
5 and 6, respectively. Column 7 gives the gap between the “Best UB”



Table 4
Results of algorithm DBR2 for solving P3 for TSPLIB instances with n¼1817.

Instance n p Opt LB2 UB2 Time (s)

u1817 1817 10 458 301 585 22.11
u1817 1817 20 309 191 357 278.49
u1817 1817 30 241 166 331 344.59
u1817 1817 40 209 155 307 1221.86
u1817 1817 50 185 127 229 330.09
u1817 1817 60 163 105 209 17.52
u1817 1817 70 148 99 194 6.04
u1817 1817 80 137 93 185 35.12
u1817 1817 90 129 90 180 7519.04
u1817 1817 100 127 86 170 10.22
u1817 1817 110 110 81 161 5.32
u1817 1817 120 107 74 148 3.99
u1817 1817 130 105 71 137 335.03
u1817 1817 140 102 68 129 4.62
u1817 1817 150 92 64 127 6.61
u1817 1817 200 80 56 105 2.56
u1817 1817 250 76 46 92 2.17
u1817 1817 300 63 46 80 2.01

Average 563.74

Table 5
Results of algorithm DBR2 for solving problem P3 for TSPLIB instances with
n∈f1817;2500;3038g.

Instance n p val(P3) Best LB Best UB Gap Time (s)

u1817 1817 5 715 715 715 0 14.10
u1817 1817 10 458 458 458 0 20.31
u1817 1817 20 309 309 309 0 257.68
u1817 1817 30 241 241 241 0 204.77
u1817 1817 40 209 209 209 0 1225.00
u1817 1817 50 185 185 185 0 314.46
u1817 1817 100 127 127 127 0 7.43
u1817 1817 200 80 80 80 0 2.57
u1817 1817 300 63 63 63 0 1.19
u1817 1817 400 51 51 51 0 0.84
u1817 1817 500 51 51 51 0 0.23

d15112 2500 5 5856 5856 5856 0 95.91
d15112 2500 10 3705 3705 3705 0 84.85
d15112 2500 20 2573 2573 2573 0 288.12
d15112 2500 30 2029 2029 2029 0 5293.59
d15112 2500 40 1723 1723 1723 0 21 899.83
d15112 2500 50 1524 1524 1524 0 5782.76
d15112 2500 100 1049 1057 0.008 94 245.98
d15112 2500 200 723 723 723 0 28 371.08
d15112 2500 300 571 571 571 0 38.39
d15112 2500 400 481 481 481 0 4.99
d15112 2500 500 424 424 424 0 4.84

pcb3038 3038 5 1064 1064 1064 0 116.74
pcb3038 3038 10 729 729 729 0 176.28
pcb3038 3038 20 493 493 493 0 22 740.76
pcb3038 3038 30 391 397 0.015 76 923.67
pcb3038 3038 40 331 337 0.018 72 364.56
pcb3038 3038 50 292 300 0.027 91 029.77
pcb3038 3038 100 207 209 0.010 27 292.39
pcb3038 3038 200 138 141 0.022 33 929.91
pcb3038 3038 300 115 115 115 0 6185.96
pcb3038 3038 400 97 97 97 0 11.48
pcb3038 3038 500 85 85 85 0 5.23

Table 6
Results with utilization of the reduction rules.

Instance n p val
(P3)

Best
LB

Best
UB

Gap PP time
(s)

Total time
(s)

u1817 1817 90 129 129 129 0 578.59 1225.76
d15112 2500 30 2029 2029 2029 0 108.25 865.63
d15112 2500 40 1723 1723 1723 0 132.37 6831.56
d15112 2500 50 1524 1524 1524 0 158.75 1645.55
d15112 2500 100 1050 1059 0.009 416.46 104 013.04
d15112 2500 200 723 723 723 0 482.84 5293.26
pcb3038 3038 20 493 493 493 0 3102.33 6800.68
pcb3038 3038 30 393 393 393 0 4063.66 52 285.79
pcb3038 3038 40 332 337 0.015 4920.76 75 702.72
pcb3038 3038 50 293 299 0.020 6199.33 80 313.04
pcb3038 3038 100 207 208 0.005 4483.28 15 717.50
pcb3038 3038 200 138 141 0.022 6060.09 42 621.69
pcb3038 3038 300 115 115 115 0 3701.42 6569.00

H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–29992998
and “Best LB” values while column 4 gives the optimal values for
P3. If the optimal solution is found for a problem within 3 h, the
values in columns 4–6 are equal. For such problems, the gaps in
column 7 are zero. Column 8 gives the solution times obtained by
the algorithm DBR2. For all of the instances with n¼1817, we obtain
the optimal solution. The most time consuming instance among
them is the one with p¼40. This instance is solved in 1225 s. For the
problems with n¼2500, we obtain the optimal solution for all
instances except the one with p¼100. The gap between the best
upper bound and the best lower bound we obtain for this instance
is 0.008. The optimal solutions for the six instances with n¼3038
are obtained. For the remaining instances the gap between the best
bounds is at most 0.027. For any of the reported network sizes, all
instances with p¼5 and 10 are solved in less than 3 min and all
instances with p¼400 and 500 are solved in less than 12 s.

Before solving the individual problem Pk for some k∈T in the
main steps of DBR2 algorithm, it is possible to eliminate some of
the variables and constraints by applying the reduction rules
which are well known for the set covering problem [31]. These
rules not only detect any infeasibility immediately, but also reveal
the optimal value of some decision variables and the dominance
relation between the constraints. We utilized these reduction rules
in our algorithm to solve the instances that require large amount
of time (more than 1 h) and provided the results in Table 6. One of
the instances in this table is taken from Table 4 and the others are
taken from Table 5. Table 6 consists of the same columns as in
Table 5 except that it has an additional column “PP Time” which
represents the total time consumed for the reduction procedure.
Among the 13 instances in this table, for 11 of them reduction
makes an improvement in terms of either the best LB, the best UB
or in the total time and those improved parameters are depicted in
bold. We observe that the maximum gap between the best LB and
the best UB decreases from 0.027 to 0.022 and we are able to
obtain the optimal solution for the instance with n¼3038 and
p¼30. For some instances the total time consumption decreases
significantly. For instance, the total time consumed decreases
around 85% for the first instance and 84% for the second instance
in Table 6. The average decrease in total time is 61% for the
instances with decrease in time and 38% for all instances. When
we subtract the reduction time from the total time, we can observe
how much reduction helps CPLEX to solve the problems. The
average of this improvement is 60% for the improved instances
and 49% for all instances. These experiments reveal that the
reduction rules are quite helpful in solving both individual
problems Pk for k∈T and P3 via DBR2 algorithm.
7. Conclusion

In this paper, we proposed a new IP formulation for the
absolute and vertex restricted p-center problems. By tightening
one set of constraints in our model, we obtained a modified model
with much larger LP bounds. When compared with the two
models from the literature, both of our models performed better
in terms of the time requirement. The LP bounds of our tightened



H. Calik, B.C. Tansel / Computers & Operations Research 40 (2013) 2991–2999 2999
model are equivalent to the LP bounds of the model proposed by
[1] and they are the strongest LP bounds among four models. We
obtained a stronger lower bound from our models by relaxing one
set of binary variables and this lower bound is equivalent to the
best known lower bound in the literature. We also provided a
polynomial time algorithm to obtain this lower bound. In addition
to the relaxation bounds, we proposed new lower and upper
bounds which can be computed very quickly and we used them
effectively in our models and algorithms. We proposed a new
method that solves successive restrictions of our model and we
computationally tested a specialization of this algorithm, referred
to as double bound algorithm, using benchmark problems from
OR-Library and TSPLIB. We were able to solve problems with
n¼2500 and 3038 from the TSPLIB using this algorithm while the
largest problem solved in the literature had 1817 nodes. We solved
the problems that require large amount of time by integrating the
reduction rules to our algorithm. We observed significant improve-
ments in utilization of the reduction rules.
Acknowledgments

This research is supported by Grant 111M520 of Program 1001 of
TÜBİTAK, The Scientific and Technological Research Council of Turkey.
The authors thank two anonymous referees for their valuable com-
ments. They also thank Bahar Y. Kara and Oya E. Karasan for their
helpful reading and comments.

References

[1] Elloumi S, Labbé M, Pochet Y. A new formulation and resolution method for
the p-center problem. INFORMS Journal on Computing 2004;16(1):84–94.

[2] Beasley, JE. OR-LIBRARY. June 2012. URL 〈http://people.brunel.ac.uk/�mastjjb/
jeb/info.html〉.

[3] Reinelt G. TSPLIB—a traveling salesman problem library. ORSA Journal on
Computing 1991;3(4):376–84.

[4] Dearing P, Francis R, Lowe T. Convex location problems on tree networks.
Operations Research 1976;24(4):628–42.

[5] Hakimi SL. Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations Research 1964;12(3):450–9.

[6] Minieka E. The m-center problem. SIAM Review 1970;12(1):138–9.
[7] Kariv O, Hakimi SL. An algorithmic approach to network location problems.

Part I: the p-centers. SIAM Journal on Applied Mathematics 1979;37
(3):513–38.

[8] Hooker J, Garfinkel R, Chen C. Finite dominating sets for network location
problems. Operations Research 1991;39(1):100–18.
[9] Megiddo N, Tamir A, Zemel E, Chandrasekaran R. An Oðn log2 nÞ algorithm for
the k-th longest path in a tree with applications to location problems. SIAM
Journal on Computing 1981;10(2):328–37.

[10] Tansel B, Francis R, Lowe T, Chen M. Duality and distance constraints for the
nonlinear p-center problem and covering problem on a tree network. Opera-
tions Research 1982;30(4):725–44.

[11] Megiddo N, Tamir A. New results on the complexity of p-centre problems.
SIAM Journal on Computing 1983;12(4):751–8.

[12] Jaeger M, Kariv O. Algorithms for finding p-centers on a weighted tree (for
relatively small p). Networks 1985;15(3):381–9.

[13] Shaw DX. A unified limited column generation approach for facility location
problems on trees. Annals of Operations Research 1999;87:363–82.

[14] Tansel BC, Francis RL, Lowe TJ. State of the art—location on networks: a survey.
Part I: the p-center and p-median problems. Management Science 1983;29
(4):482–97.

[15] Tansel BC, Francis RL, Lowe TJ. State of the art—location on networks: a survey.
Part II: exploiting tree network structure. Management Science 1983;29
(4):498–511.

[16] Handler GY, Mirchandani PB. Location on networkstheory and algorithms.
Cambridge, MA: MIT Press; 1979.

[17] Daskin MS. Network and discrete location: models, algorithms, and applica-
tions. New York: Wiley; 1995.

[18] Tansel BC. Discrete center problems. In: Eiselt HA, Marianov V, editors. Founda-
tions of location analysis. New York: Springer; 2011. p. 79–106 [Chapter 5].

[19] Cornuéjols G, Nemhauser GL, Wolsey LA. A canonical representation of simple
plant location problems and its applications. SIAM Journal on Algebraic
Discrete Methods 1980;1(3):261–72.

[20] Christofides N, Viola P. The optimum location of multi-centres on a graph.
Operational Research Quarterly 1971:145–54.

[21] Toregas C, Swain R, ReVelle C, Bergman L. The location of emergency service
facilities. Operations Research 1971;19(6):1363–73.

[22] Garfinkel R, Neebe A, Rao M. The m-center problem: minimax facility location.
Management Science 1977;23(10):1133–42.

[23] Daskin MS. A new approach to solving the vertex p-center problem to
optimality: algorithm and computational results. Communications of the
Operations Research Society of Japan 2000;45(9):428–36.

[24] Ilhan T, Pinar M. An efficient exact algorithm for the vertex p-center problem.
2001. URL 〈http://www.ie.bilkent.edu.tr/�mustafap/pubs/〉.

[25] khedhairi Al-A, Salhi S. Enhancements to two exact algorithms for solving the
vertex p-center problem. Journal of Mathematical Modelling and Algorithms
2005;4(2):129–47.

[26] IBM. IBM ILOG CPLEX Optimization Studio. 2013 URL 〈www.ibm.com/soft
ware/products/us/en/ibmilogcpleoptistud/〉.

[27] González TF. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science 1985;38:293–306.

[28] Floyd RW. Algorithm 97: shortest path. Communications of ACM 1962;5
(6):345–6.

[29] XINOX Software. JCreator—Java IDE. 2012. URL 〈http://www.jcreator.com/〉.
[30] Calik H. New formulations and exact solution methods for the capacitated and

uncapacitated p-center location problem. PhD dissertation. Ankara, Turkey:
Department of Industrial Engineering, Bilkent University; to appear.

[31] Francis RL, Leon F, McGinnis J, White JA. Facility layout and location: an
analytical approach. Upper Saddle River, NJ: Prentice Hall; 1992.

http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref1
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref1
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref3
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref3
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref5
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref5
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref6
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref8
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref8
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref9
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref9
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref9
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref9
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref11
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref11
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref12
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref12
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref13
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref13
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref14
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref14
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref14
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref15
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref15
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref15
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref16
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref16
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref17
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref17
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref18
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref18
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref19
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref19
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref19
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref20
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref20
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref21
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref21
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref22
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref22
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref23
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref23
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref23
http://www.ie.bilkent.edu.tr/~mustafap/pubs/
http://www.ie.bilkent.edu.tr/~mustafap/pubs/
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref25
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref25
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref25
www.ibm.com/software/products/us/en/ibmilogcpleoptistud/
www.ibm.com/software/products/us/en/ibmilogcpleoptistud/
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref28
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref28
http://www.jcreator.com/
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref31
http://refhub.elsevier.com/S0305-0548(13)00190-1/sbref31

	Double bound method for solving the p-center location problem
	Introduction
	Related work
	Proposed formulation (P3)
	Relaxation and heuristic bounds
	LP relaxations
	Semi-relaxations
	Attaining quick lower and upper bounds

	Double bound algorithms
	Computational experiments
	Conclusion
	Acknowledgments
	References




