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a b s t r a c t

We analyze the cross-correlation matrix C of the index returns of the main financial mar-
kets after the 2008 crisis using methods of randommatrix theory. We test the eigenvalues
of C for universal properties of random matrices and find that the majority of the cross-
correlation coefficients arise from randomness.We show that the eigenvector of the largest
deviating eigenvalue of C represents a global market itself. We reveal that high volatility of
financialmarkets is observed at the same timeswith high correlations between themwhich
lowers the risk diversification potential even if one constructs a widely internationally di-
versified portfolio of stocks. We identify and compare the connection and cluster structure
of markets before and after the crisis using minimal spanning and ultrametric hierarchical
trees. We find that after the crisis, the co-movement degree of the markets increases. We
also highlight the key financial markets of pre and post crisis using main centrality mea-
sures and analyze the changes. We repeat the study using rank correlation and compare
the differences. Further implications are discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The global financial system is composed of a large variety of markets that are positioned in different geographic locations
and in which a broad range of financial products are traded. Despite the diversity of markets, index movements often
respond to the same economic announcements or market news [1–3] which implies that financial time series can display
similar characteristics and be correlated. Since thework ofMarkowitz [4], correlations of financial time series are constantly
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a subject of extensive studies both at the theoretical and practical levels. It is important not only for understanding the
collective behavior of a complex system but also for asset allocation and estimating the risk of a portfolio.

In particular since the recent 2008 financial crisis, which originated in the US and then spread to almost all markets in
the world, many economists have been studying the correlation structure between financial markets and the transmission
of volatility from one to another. One of the major difficulties in these studies are the complicated unknown underlying
interactions of the financialmarkets. Besides correlations betweenmarkets need not be just pairwise butmay rather involve
clusters of markets and relationship between any two pair may change in time [5].

In earlier times, physicists experienced similar problems. The problem became popular by Wigner’s work in the 1950s
for application in nuclear physics, in the study of statistical behavior of neutron resonances and other complex systems of
interactions [6]. He tried to understand the energy levels of complex nuclei, whenmodel calculations failed to explain exper-
imental data. To overcome this problem, he assumed that the interactions between the constituents comprising the nucleus
are so complex that they can be modeled as random [5]. Based on this assumption, he derived the statistical properties of
very large symmetric matrices with i.i.d. entries and the results were in remarkable agreement with experimental data.

More recently random matrix theory (RMT) has been applied to analyze the financial time series [5,7–37]. In particular,
correlation matrices are computed for the empirical data and quantities associated with these matrices are compared
to those of random matrices. The extent to which properties of the correlation matrices deviate from random matrix
predications clarifies the status of the information derived from the computation of covariances [12]. The literature focuses
on the correlations between individual stocks in a market; however, in this study we will analyze the cross-correlations
between 87 main financial markets in the world by tools of RMT.

The rest of the paper is organized as follows; in Section 2, we give a brief description of the methodology. Section 3
describes the data and contains several results of our analysis; in particular Sections 3.1, 3.2 and 3.4 present the eigenvalue
and eigenvector analysis of the correlation matrix with discussion of the relation between volatility and correlation of
financial markets. In Section 3.6, we construct a correlation based market network and compare the structure before and
after the 2008 financial crisis by tools of graph theory. In Section 4, we use an alternative approach to the construction
of the correlation matrix, present the related results and discuss possible further studies. Finally, Section 5 contains some
concluding remarks.

2. Methodology

Let Pi(t) be the index of the stock market i = 1, 2, . . . ,N at time t and t = 0, 1, . . . , T . The logarithmic index return of
the ith market index over a time interval 1t is given by

Ri(t, 1t) ≡ ln Pi(t + 1t) − ln Pi(t). (1)

We consider the normalized returns

ri(t) ≡
Ri − ⟨Ri⟩

σi
(2)

where σi ≡


⟨R2

i ⟩ − ⟨Ri⟩
2 is the standard deviation of Ri and ⟨· · ·⟩ is the time average over the considered period. Then the

equal time cross-correlation matrix C is the matrix with elements

cij ≡ ⟨rirj⟩. (3)

In matrix notation, the interaction matrix C can be written as

C =
1
T
RRt (4)

where R is an N × T matrix with entries rim ≡ ri(m1t) with i = 1, 2, . . . ,N;m = 1, . . . , T and Rt denotes the transpose of
R.

We will compare the properties of the interaction matrix Cwith those of a random cross-correlation matrix.
Let xi(t); i = 1, 2, . . . ,N where xi(t) are independent, identically distributed random variables. We define the N × T

matrix A by elements ait ≡ xi(t). The matrixW defined as

W =
1
T
AAt (5)

is called a Wishart matrix [38–40]. Let each xi(t) be normally distributed and rescaled to have zero mean and constant unit
standard deviation. Under the restriction of N → ∞, T → ∞ with Q ≡ T/N > 1 is fixed, the probability density function
ρrm(λ) of eigenvalues λ of the matrixW is [39,40]

ρrm(λ) =
Q
2π

√
(λmax − λ)(λ − λmin)

λ
(6)
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and

λmax
min = 1 +

1
Q

± 2


1
Q

(7)

where λmax
min are the maximum and minimum eigenvalues ofW. For the rest of the paper, the analyzed eigenvalues are rank

ordered i.e. λi < λj for all i < j and αi denote the corresponding unfolded eigenvalues for all i.
The distribution of nearest neighbor eigenvalue spacing ofW is given by Wigner–Dyson distribution [41,42]:

ρWnn(s) =
πs
2

exp

−

π

4
s2


(8)

where s = αi+1 − αi.
The distribution of next-nearest neighbor eigenvalue spacing ofW is given by [41,42]:

ρWnnn(s) =
218

36π3
s4 exp


−

64
9π

s2


(9)

where s = (αi+2 − αi)/2.
The number variance

2 is defined as the variance of the number of unfolded eigenvalues in the intervals of length l,
around each αi [41,42],2

(l) = ⟨[n(α, l) − l]2⟩α (10)

where n(α, l) is the number of unfolded eigenvalues in the interval [α − l/2, α + l/2] and ⟨· · ·⟩α denotes an average over
all α. For large values of l, the number variance for W behaves like

2
∼ ln l and if the eigenvalues are uncorrelated then2

∼ l [41,42].
Let vk be the eigenvector corresponding to the eigenvalue λk. We denote the jth component of vk as vk,j. By construction

we have
N

j=1[vk,j]
2

= 1. If we normalize the eigenvectors (vk → v′

k) such that
N

j=1[v
′
k,j]

2
= N then the components of

each normalized eigenvector v′

k have a Gaussian distribution with mean zero and unit variance [10],

ρ(v′) =
1

√
2π

exp


−

v′2

2


. (11)

A useful quantity in characterizing the eigenvectors is the so-called Inverse Participation Ratio (IPR) [11]. For the eigen-
vector vk, it is defined as

IPRk ≡

N
j=1

[vk,j]
4. (12)

For our purposes it is sufficient to know that the reciprocal of the IPRk (called participation ratio) quantifies the number of
significant components of the eigenvector vk. In RMT, the expectation of IPRk is 3/N since the kurtosis for the distribution
of the eigenvector component is 3.

3. Data and the results

We analyze daily closing values of 87 main benchmark indexes in the world between 01/01/2009 and 31/07/2012 (data
are obtained from Bloomberg). To reflect the market dynamics better, index values are not converted to a single currency.
Markets in some countries do not operate on Fridays; in that case Saturdays’ values are considered as Fridays’. If a market
is closed on a business day, we carry over the last value. The list of indexes is in the Appendix.

3.1. Eigenvalue analysis

We take 1t = 1 day and compute the 87 × 87 cross-correlation matrix C. We have N = 87 and T = 933 giving Q ≈

10.73, with theoretical lower and upper limits λmin ≈ 0.48 and λmax ≈ 1.71 for the eigenvalues of C. First, eigenvalues of C
are compared with the theoretical distribution ρrm(λ) (see Fig. 1).

One immediate thing to note is that the largest eigenvalue of C is ≈23.8 which is 14 times larger than the theoretical
upper limit and stands out from all others. Also a first view suggests the presence of a well-defined bulk of eigenvalues.
Although ≈52% of the eigenvalues fall into the theoretical interval, ≈93% of the eigenvalues are smaller than λmax.1

1 The high percentage of eigenvalues below λmin may be attributed to the fact that many of the less liquid markets behave independently relative to the
rest of the others [12], and also theoretical results are also valid in the infinite limit; hence there is always a small probability of finding eigenvalues above
λmax and below λmin [10].
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Fig. 1. Empirical vs. theoretical eigenvalue distribution.

a b

Fig. 2. Simulation (finite size (a)–fat tails (b)) vs. theoretical eigenvalue distribution.

a b

Fig. 3. Nearest and next-nearest neighbor spacing distribution of eigenvalues.

Since the theoretical distribution is valid strictly forN → ∞ and T → ∞, wemust test that the deviations for the largest
few eigenvalues are not finite size effects [11]. First, we construct N = 87 mutually uncorrelated time series generated to
have (a) standard normal distribution (as in theory), and (b) identical power-law tails (as in empirical examples [43]) each
having length T = 933. Then we compare eigenvalue densities of their cross-correlation matrices with the theoretical dis-
tribution (see Fig. 2). We find good agreement with the theory suggesting that the deviations of the few largest eigenvalues
from RMT in Fig. 1 are not caused by finite size effects or the fact that returns are fat tailed.2

We apply further RMT tests to strength our claim. The first independent test is the comparison of the distribution of
empirical nearest neighbor eigenvalue spacing ρnn(s) with ρWnn(s) (see Fig. 3). The agreement suggests that the positions of
two adjacent empirical unfolded eigenvalues at the distance s are correlated similar to the eigenvalues ofW.

The next test is the comparison of the distribution of empirical next-nearest neighbor eigenvalue spacing ρnnn(s) with
ρWnnn(s). We demonstrate this correspondence in Fig. 3 which shows a nice agreement between empirical data and the
theory.

To test for long-range two point eigenvalue correlations, we consider the number variance. It is clear that the number
variance of empirical data agrees well with the theory (see Fig. 4).

It can be concluded that the bulk of the eigenvalue statistics of the empirical cross-correlation matrix C are consistent
with those of the real symmetric randommatrixW and the deviations from the RMT contain genuine information about the
correlations in the system.

2 The simulation procedure is repeated many times; in each case similar results as in Fig. 2 are obtained.
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Fig. 4. Number variance.
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Fig. 5. Density of components of the normalized eigenvectors.

3.2. Eigenvector analysis

The deviations of eigenvalue statistics from the RMT results suggest that these deviations should also be displayed in the
statistics of corresponding eigenvector components [43]. First, we choose some of the normalized eigenvectors and display
their component distribution in Fig. 5 which shows that the probability density of eigenvector components corresponding
to eigenvalues in the bulk agrees well with the RMT. However, the component distribution of λi > λmax shows significant
deviation from the theory. In particular ρ(v′

87) is almost uniform.
The kurtosis and skewness of the components of each v′

i are given in Fig. 6. For the bulk, kurtosis and skewness fluctuate
around 3 and 0 respectively which is consistent with normal behavior.

Components of the v87 suggest that most of the financial markets participate in this eigenvector. In addition, almost all
components are positive. To have a clear picture, we look at Fig. 7 showing the contributions of the stock markets to the
eigenvector corresponding to (a) the largest eigenvalue, (b) an eigenvalue from the bulk and (c) the smallest eigenvalue. For
the largest eigenvalue, the majority of the markets have positive representations which is an indicative of a common factor
that affects almost all markets with the same bias. This gives us a reason to believe that v87 represents a global market itself,
that is, the result of the interactions between markets [37].
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a b

Fig. 6. Kurtosis and skewness of the components of each eigenvector.

3.3. Global market mode

To see if v87 represents a global market itself, we take the projection of the time series Ri(t) on the v87 and compare it
with a standard measure of a global performance. In our case, the most related global index is the Morgan Stanley Capital
International (MSCI) All CountryWorld Index (ACWI). It is a free-float weighted equity index which includes both emerging
and developed world markets. The projection of the time series Ri(t) on v87 is given by the following,

Rv87(t) =

87
i=1

v87,iRi(t) (13)

Rv87(t) is usually called themarket mode [11,44] (in this study we will call it the global market mode). Fig. 8 shows a compar-
ison of the global market mode and the returns of the MSCI index (we standardize both series to have zero mean and unit
variance).

We find remarkable similarity between the two return series. The empirical correlation coefficient between them is
0.93. The good agreement shows that v87 corresponds to a global market factor showing the general trend of all markets
and quantifies the worldwide influence on them [13].

Considering components of v87 we see that the top six contributers are from European countries. On the other hand,
the majority of the markets have very small contributions that are proportional to the size and liquidity of these markets.
An interesting case is the very small contributions of the big and liquid markets of South Korea, India and Russia. Since
the market eigenvector can be considered as a general trend of all markets, this situation can be identified as the positive
diversification of these emerging markets from others after the 2008 crisis.

For each eigenvector, the number ofmarketswith a significant participation can be accurately quantified by the IPR. Fig. 9
shows the IPR and PR as functions of the eigenvalue index. Eigenvectors corresponding to the bulk have participation ratios
around RMT prediction N/3 = 29. However, v87 has the highest number (≈44) of significant participants which is far from
the suggested value. We also see that eigenvectors corresponding to the smallest eigenvalues have the lowest number of
significant participants.3

3.4. Relation between volatility and correlation

In order to examine the evolution of the correlations in the financial system, we investigate the mean correlation of
returns by a rolling window approach. We pick window length l = 22 (business month) and roll the time window through
the data one day at a time. Explicitly, the mean correlation c̄l(t) for the correlation coefficients c lij(t) in a time window
[t − l + 1, t] is defined as

c̄l(t) =
2

N(N − 1)


i<j

c lij(t). (14)

We want to compare the mean correlation of the financial markets with the system’s volatility. We take the absolute
value of the global market mode as the daily volatility proxy of the financial system. A comparison of mean correlation and
volatility is given in Fig. 10which shows that high levels of global volatility and correlation are strongly linked.4 Furthermore,
after the times of high volatility, markets still stay highly correlated for some period5 althoughwe have to keep inmind that
the procedure of shifting the window by one data point is partially responsible in this case.

3 That differs from the observations on the US stock market [11] where large values of PRs have been found at both edges of the theoretical distribution.
4 Other studies find similar results by empirical analyses [45–47] and agent based model simulations [48]. For example, Ref. [46] reveals that cross-

correlations between nine highly developed markets fluctuate strongly with time and increase in periods of high market volatility. Moreover, based on
this phenomenon, [49] constructs an indicator of systemic risk by principle component analysis.
5 In Ref. [50], such a situation is explained as the effect of the belief that market movement connectedness turns into a self-fulfilling prophecy after the

crisis.
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(a) Contributions of stock markets. (b) Contributions of stock markets. (c) Contributions of stock markets.

Fig. 7. Contributions of stock markets corresponding to different eigenvectors.

The three highest volatility values are observed in the weeks of:

• 10/05/2010: European Union finance ministers agreed an emergency loan package that with IMF support could reach
750 billion euros to prevent a sovereign debt crisis spreading through the eurozone,

• 08/08/2011: Credit rating agency SP downgraded the US federal government rating from AAA (outstanding) to AA+
(excellent),

• 22/09/2011: Moody’s downgraded three US banks: Bank of America, Citigroup and Wells Fargo; SP downgraded seven
Italian banks and Fed announced significant downside risks to US economy,

where each week above, global correlation also takes its highest values.
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Fig. 8. MSCI All Country World Index returns vs. global market mode.

Fig. 9. IPR and PR of the eigenvectors.

a

b

Fig. 10. (a) Global volatility vs. global correlation and (b) global volatility (moving window) vs. global correlation.

We also analyze the skewness and kurtosis of return distributions by rolling the timewindow of length l = 264 (business
year) through the full data set (see Fig. 11, fat tails are demonstrated by excess kurtosis).

3.5. Time-varying largest eigenvalue

After revealing that the largest eigenvalue carries true information, we apply a similar approach of Ref. [51] to our data.
With a one-year length rolling window, we obtain the time-varying largest eigenvalue of the return correlation matrix and
observe its characteristics.
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Fig. 11. Kurtosis and skewness of returns obtained from a moving window.
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Fig. 12. Time-varying largest eigenvalue of the correlation matrix obtained from a 1-year length rolling window.

Fig. 12 shows that the largest eigenvalue peaks during thehighest global volatility levels and there is a strong link between
the magnitude of this eigenvalue and the volatility levels in general.6

3.6. Correlation-based financial network analysis

Financialmarkets around theworld can be regarded as a complex system. This forces us to focus on a global-level descrip-
tion to analyze the interaction structure among markets which can be achieved by representing the system as a network.
During the recent years networks have proven to be a very efficient way to characterize and investigate a wide range of
complex systems including stock, commodity and foreign exchange markets [45,52–76]. In this study, we are interested
in identifying the connection structure and hierarchy in the network of financial markets formed with cross-correlations
of returns. In order to do that we construct the minimal spanning tree (MST) and the ultrametric hierarchical tree (UHT)
associated with it [44,45,53–80].

To create a network based on return correlations, we use the metric defined by Mantegna [53],

dij =

2(1 − cij). (15)

It is a valid euclidean metric since it satisfies the necessary properties; (i) dij ≥ 0, (ii) dij ⇔ i = j, (iii) dij = dji and (iv)
dij ≤ dik + dkj. This transformation creates an N × N distance matrix D from the N × N cross-correlation matrix C. The
distance dij varies from 0 to 2 with small distances corresponding to high correlations and vice versa.

MST is constructed as follows: start with the pair of elements with the shortest distance and connect them; then the
second smallest distance is identified and added to the MST. The procedure continues until there are no elements left, with
the condition that no closed loops are created. Finally we obtain a simply connected network that connects all N elements
with N − 1 edges such that the sum of all distances is minimum.7

After defining the euclidean space of financial markets, we next move to the ultrametric space. An ultrametric space is
the space where all distances within it are ultrametric. The ultrametric distance d∗

ij is understood as a regular distance with
properties (i)–(iii) and property (iv) is replaced by a stronger condition; (iv)* d∗

ij = max(d∗

ik, d
∗

kj). Ultrametric distances are
important to hierarchical clustering since they redefine the distance between two elements as the distance between their

6 Which coincides with the findings of Ref. [51]: The authors study 1340 time series with 9 year daily data and investigate how the maximum singular
value λ changes over (time lags) for different years and find that it is greatest in times of crises.
7 This can be seen as a way to find the N − 1 most relevant connections among a total of N(N − 1)/2 connections which is especially appropriate for

extracting the most important information concerning connections when a large number of markets is under consideration. In terms of financial markets,
MSTs can also be considered as filtered networks enabling us to identify the most probable and the shortest path for the transmission of a crisis.
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(a) 2005–2007 (period 1).

(b) 2009–2012 (period 2).

Fig. 13. Minimal spanning trees of (a) period 1 and (b) period 2.

closest ancestor. The MST provides the sub-dominant ultrametric hierarchical structure of the markets into what is called
UHT. TheMST is associatedwith the single-linkage clustering algorithm [54], sowe present the UHT using the samemethod.

To understand the effects of the 2008 financial crisis onmarkets’ integration structure, we analyze the cases correspond-
ing to two different time periods; period one: 01/01/2005–01/01/2007 and period two: 01/01/2009–31/07/2012. The MSTs
and the UHTs of these periods are given in Figs. 13 and 14 respectively.8

8 Since data were unavailable, we had to omit three markets; Bosnia and Herzegovina, Kuwait and Serbia in the analysis of period one.
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(a) 2005–2007 (period 1).

(b) 2009–2012 (period 2).

Fig. 14. Ultrametric hierarchical trees of (a) period 1 and (b) period 2.
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Table 1
Markets with highest node degrees.

(a) Period 1 (b) Period 2
Market Node degree Market Node degree

France 11 France 11
Hong Kong 5 Hong Kong 5
Singapore 5 SP 5
Austria 5 Germany 5
Indonesia 4 Netherlands 4
Norway 4 Australia 4
SP 3 Singapore 3
UK 3 Qatar 3
South Korea 3 Kuwait 3
Australia 3 Slovenia 3

Table 2
Markets with highest node strength.

(a) Period 1 (b) Period 2
Market Node strength Market Node strength

France 8.93286 France 7.88209
Austria 2.57976 SP 4.18860
SP 2.47343 Germany 3.79013
Hong Kong 2.26497 Netherlands 3.77997
Norway 2.13227 Hong Kong 3.77615
UK 2.10376 Australia 2.57149
Singapore 2.07421 Singapore 2.18214
Czech Republic 1.77035 Namibia 2.17670
South Korea 1.72229 Italy 1.80545
South Africa 1.47247 DJI 1.79151

For both periods, the three US market indexes are close together as expected and Germany serves as a hub for the con-
nection between two main clusters; America and Europe. France seems to be the central node as it has the highest number
of linkages in both cases and surprisingly the US market, which is usually accepted as the world’s most important finan-
cial market, displays a somewhat looser connection with the others. The European Union (EU) seems to form the central
trunk of the MSTs and the clusters appear to be organized principally according to a geographical position and historical
and linguistic ties [81].

However, major changes are observed between two periods. In particular, the effect of the eurozone debt crisis shows
itself on the financial markets in period 2. The problematic countries Greece, Italy, Portuguese, Spain and Cyprus are all tied
together, showing that bondmarket connection results with stock market connection. UK, not a eurozonemember, loses its
importance in the network in period 2. Three important markets that are positively diversified from the others through the
2008 crisis (Russia, India and South Korea) stand isolated in the network.

3.6.1. Centrality measures
In network theory, the centrality of a node determines the relative importance of that node within a network. Next, we

perform a detailed analysis on MSTs using different quantitative definitions of centrality.9

Node degree is the number of nodes that is adjacent to it in a network. In general the larger the degree, themore important
the node is. The highest ten node degrees and the frequency distributions are given in Table 1 and Fig. 15 respectively.

Node strength is the sum of correlations of the given node with all other nodes to which it is connected. The highest ten
node strengths and the frequency distributions are given in Table 2 and Fig. 16 respectively.

Eigenvector centrality is a measure that takes into account how important the neighbors of a node are. It is useful in
particular when a node has a low degree but is connected to nodes with high degrees and thus the given nodemay influence
others indirectly. It is defined as the ith component of eigenvector v, where v corresponds to the largest eigenvalue λ of the
adjacency matrix A. The highest ten eigenvector centralities and the frequency distributions are given in Table 3 and Fig. 17
respectively.

9 Before beginning the analysis, we point out an important observation: even we have an extra three edges in the network in period two, the total
distances in the MST is 82.593 whereas this values is 87.651 in period one. This shows increased strength in the correlation of financial markets after
the 2008 crisis. A similar conclusion is obtained by using the time-varying correlation data from the Section 3.4. In particular, we split the time-varying
correlations into two sets as pre and post 2008. A non-parametricmedian comparison test reveals that the set of correlations in post 2008 has a significantly
larger median.
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Fig. 15. Frequency distribution of node degree.
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Fig. 16. Frequency distribution of node strength.

Table 3
Markets with highest eigenvector centrality.

(a) Period 1 (b) Period 2
Market Eigenvec. centrality Market Eigenvec. centrality

France 0.666 France 0.624
UK 0.249 Germany 0.323
Luxembourg 0.224 Netherlands 0.310
Germany 0.213 Austria 0.212
Belgium 0.212 Italy 0.212
Spain 0.212 UK 0.209
Sweden 0.210 Finland 0.209
Finland 0.210 Switzerland 0.190
Switzerland 0.193 Belgium 0.190
Netherlands 0.193 Ireland 0.190

Betweenness centralitymeasures the importance of a node as an intermediate part between other nodes. For a given node
k, it is defined as

B(k) =


i,j

nij(k)
mij

(16)

where nij(k) is the number of shortest geodesic paths between nodes i and j passing through k, and mij is the total number
of shortest geodesic paths between i and j.10 The highest ten betweenness centralities and the frequency distributions are
given in Table 4 and Fig. 18 respectively.11

10 MST is a fully-connected network somij ≠ 0.
11 There are 38 indexes in period one and 41 indexes in period two with zero betweenness centrality i.e. for any two markets in the network, no shortest
path passes through them.
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Fig. 18. Frequency distribution of betweenness centrality.

Table 4
Markets with highest betweenness centrality.

(a) Period 1 (b) Period 2
Market Btw. centrality Market Btw. centrality

France 0.7249486 France 0.68044
Hong Kong 0.5166030 Namibia 0.57264
Austria 0.5145460 Netherlands 0.53953
UK 0.4757567 South Africa 0.50150
Luxembourg 0.4601822 Singapore 0.46539
Czech Republic 0.3385248 Hong Kong 0.45253
South Korea 0.2970908 Australia 0.29521
Hungary 0.2876873 Germany 0.28810
Egypt 0.2535998 Austria 0.27579
Singapore 0.2248016 Czech Republic 0.25964

Closeness centrality is a measure of the average geodesic distance from one node to all others. This measure is high for
strongly connected central nodes and large for poorly connected ones. For node i in a network with N nodes, it is defined as

C(i) =
1

N
j=1

d(i, j)
(17)

where d(i, j) is the minimum geodesic path distance between nodes i and j. The highest ten closeness centralities and the
frequency distributions are given in Table 5 and Fig. 19 respectively.

Analysis reveals that France takes first place in almost all categories for both periods and other financial centers Germany,
Hong Kong and Singapore keep their importance in the network after the crisis. However, the same cannot be said for the
UK; while belonging to the top ten in all categories in period one, it belongs to the top ten only in 2 categories in period
two.12

12 Note that all frequency distributions of centrality measures (except for closeness centrality) are likely to decrease exponentially. One may say that
these measures exhibit a power-law distribution; p(x) ∼ x−β for measure value x and constant β which in the case the network is called scale-free [82].



A. Sensoy et al. / Physica A 392 (2013) 5027–5045 5041

Table 5
Markets with highest closeness centrality.

(a) Period 1 (b) Period 2
Market Closeness centrality Market Closeness centrality

France 0.002660 Netherlands 0.002336
UK 0.002513 France 0.002331
Luxembourg 0.002500 South Africa 0.002299
Austria 0.002358 Namibia 0.002252
Hong Kong 0.002347 Singapore 0.002114
Germany 0.002252 Germany 0.002058
Belgium 0.002203 Austria 0.002058
Spain 0.002203 Italy 0.001976
Sweden 0.002193 Hong Kong 0.001961
Finland 0.002193 UK 0.001953
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Fig. 19. Frequency distribution of closeness centrality.

4. Discussion

In our study, one concern about the correlations between financial markets is that the relationship may be non-linear; in
that case rank correlationmay capture the relations better. In order to see the difference,we use a rank correlation approach:
for each index i, the returns Ri(t) are ranked Rrank

i (t) then normalized as

r ranki (t) ≡
Rrank
i − ⟨Rrank

i ⟩

σ rank
i

(18)

where σ rank
i ≡


⟨(Rrank

i )2⟩ − ⟨Rrank
i ⟩2; then we repeat every analysis. The results are almost indistinguishable. The largest

eigenvalue is≈22.44 and≈94% of the eigenvalues are smaller thanλmax. Considering components of the largest eigenvector,
the top six positive contributers do not change.

For the network analysis, we define the metric as a linear realization of the rank correlation; dij = 1 − cij. The major
difference is that (instead of Germany) France serves as a hub for connecting North America and Europe in period two.

4.1. Further study

A lagged relationship is a possible characteristic of many pairwise financial time series. First, it would not be a surprise
if one series had a delayed response to another time series, or it had a delayed response to a common event that affects
both series. Secondly, it may be the case that the response of one series to the other or to an outside event may spread in
time, such that an event restricted to one observation elicits a response at multiple observations. Furthermore, series may
not even be stationary in some cases. Equal-time cross-correlations are inadequate to characterize the relationship between
time series in such situations. Some authors incorporated these facts into their studies and revealed interesting results using
the concepts of detrended and long-range cross-correlations and time lag RMT [83–89].13 In the near future, we are planning
to apply these new approaches to our data set and analyze the differences in our findings.

13 For example, Kullmann et al. [83] showed that inmany cases themaximum correlation appears at nonzero time shift, indicating directions of influence
between the stocks. Similarly, Wang et al. [84] find long-range power-law cross-correlations in the absolute values of returns that quantify risk, and find
that they decay much more slowly than cross-correlations between the returns. They find that when a market shock is transmitted around the world, the
risk decays very slowly.
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5. Conclusion

The global financial crisis of 2008 began in July 2007 when a loss of confidence by investors in the value of securi-
tized mortgages in the US resulted in a liquidity crisis. In September 2008, the crisis deepened as stock markets world-
wide crashed and entered a period of high volatility. This study compares before and after the 2008 crisis by analyzing the
cross-correlations of financial markets using the tools of RMT and network theory.

In particular, we verified the validity of the universal predictions of RMT for the statistics of the eigenvalues and the corre-
sponding eigenvectors of the cross-correlation matrix. Then the cross-correlations between markets not totally explainable
by randomness were identified by computing the deviations of the empirical data from the RMT predictions. We showed
the presence of a certain linear combination of indexes representing a global market itself that arises from interactions.

By using this particular combination, we observed that markets become highly correlated in times of high volatility (also
the time-varying largest deviating eigenvalue peaks during the highest volatility); moreover when the volatility passes to
its low levels, the increased degree of co-movement continues for a considerable amount of time. We also find that markets
are more correlated after 2008 compared to the period of 2005–2007. These facts lower the diversification potential even if
one constructs a widely internationally diversified portfolio of stocks.

We found the connection structure of financialmarkets for pre and post 2008 crisis using correlation based networks.We
show that in an environment of increasing integration of trade and financial markets, geographical position and historical
and linguistic ties still play an important role in co-movements of stock markets. Analysis also shows that eurozone debt
crisis forces the stock markets of problematic countries to move together, revealing an interesting fact on how bond and
stock markets of a country interact.

We identified key financial markets using several centrality measures. Analysis shows that centers like France, Germany
and Hong Kong keep their importance in the financial system after the 2008 crisis. However, the same cannot be said for
the UK.

To extract the information arising from non-linear relations between markets, we repeated each analysis using a rank
correlation and found that the results are almost indistinguishable. Possible extensions for further research includes appli-
cations of the long-range cross-correlations and time lag-RMT to our data.
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Appendix. Analyzed markets

Country Index Symbol

Argentina Merval Arge
Australia SP/ASX 200 Aust
Austria ATX Autr
Bahrain Bahrain all share index Bahr
Bangladesh DSE general index Bang
Belgium BEL 20 Belg
Brazil Ibovespa Braz
Bosnia and Herzegovina SASE 10 BoHe
Botswana Gaborone Bots
Bulgaria SOFIX Bulg
Chile IPSA Chil
China Shangai SE composite Chin
Colombia IGBC Colo
Croatia CROBEX Croa
Cyprus CSE Cypr
Czech Republic PX CzRe
Denmark OMX Copenhagen 20 Denm
Egypt EGX 30 Egyp
Estonia OMXT Esto
Finland OMX Helsinki Finl
France CAC 40 Fran
Germany DAX Germ
Ghana Ghana all share index Ghan
Greece Athens SX general index Gree
Hong Kong Hang Seng HoKo

(continued on next page)
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Country Index Symbol

Hungary Budapest SX Index Hung
Iceland OMX Iceland all share index Icel
India SENSEX 30 Indi
Indonesia Jakarta composite index Indo
Ireland ISEQ Irel
Israel Tel Aviv 25 Isra
Italy FTSE MIB Ital
Jamaica Jamaica SX market index Jama
Japan Nikkei 225 Japa
Jordan ASE general index Jord
Kazakhstan KASE Kaza
Kenya NSE 20 Keny
Kuwait Kuwait SE weighted index Kwai
Latvia OMXR Latv
Lebanon BLOM Leba
Lithuania OMXV Lith
Luxembourg Luxembourg LuxX Luxe
Macedonia MBI 10 Mace
Malaysia KLCI Mala
Malta Malta SX Index Malt
Mauritius SEMDEX Maur
Mexico IPC Mexi
Mongolia MSE TOP 20 Mong
Montenegro MOSTE Mont
Morocco CFG 25 Moro
Namibia FTSE/Namibia overall Nami
Netherlands AEX Neth
New Zealand NZX 50 NeZe
Nigeria Nigeria SX all share index Nige
Norway OBX Norw
Oman MSM 30 Ohma
Pakistan Karachi 100 Paki
Peru IGBVL Peru
Philippines PSEi Phil
Poland WIG Pola
Portugal PSI 20 Port
Qatar DSM 20 Qata
Romania BET Roma
Russia MICEX Russ
Saudi Arabia TASI SaAr
Serbia BELEX 15 Serb
Singapore Straits times Sing
Slovakia SAX Slok
Slovenia SBI TOP Slov
South Africa FTSE/JSE Africa all share SoAf
South Korea KOSPI SoKo
Spain IBEX 35 Spai
Sri Lanka Colombo all-share index SrLa
Sweden OMX Stockholm 30 Swed
Switzerland SMI Swit
Taiwan TAIEX Taiw
Thailand SET Thai
Tunisia TUNINDEX Tuni
Turkey ISE national 100 Turk
Ukraine PFTS Ukra
United Arab emirates ADX general index UAE
United Kingdom FTSE 100 UK
United States of America Dow Jones industrial DJI

(continued on next page)
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Country Index Symbol

United States of America Nasdaq composite Nasd
United States of America SP 500 SP
Venezuela IBC Vene
Vietnam VN-Index Viet
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