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Abstract We develop the formalism for BCS-BEC cros-
sover in the presence of weak random impurity and calculate
the effect of the random potentials on the basic mean-field
quantities. The disorder has been included through the Noz-
ieres and Schmitt—Rink theory of superconducting fluctua-
tions, and we obtain the disorder induced superfluid order
parameter and chemical potential through a self-consistent
calculation. We also calculate the condensate fraction which
reveals a distinct nonmonotonic behavior. The downturn in
the latter result occurs at the crossover regime with grad-
ual depletion on the BEC side. The non-monotonic feature
in the condensate fraction data has been measured in clean
systems. Motivated by the above result, we discuss the sta-
bility of a disordered fermionic superfluid in the crossover
regime.

Keywords Superconductivity - BCS-BEC crossover -
disorder effects
1 Introduction

The smooth evolution of atoms from Bardeen—Cooper—
Schrieffer (BCS) physics governed by Cooper pairs to

A. Khan (<)

Indian Institute of Science Education and Research (IISER)
Kolkata, Mohanpur Campus, Nadia 714252, India

e-mail: ayankhan@gmail.com

S. Basu
Department of Physics, IIT Guwahati, Guwahati, Assam 781039,
India

B. Tanatar
Department of Physics, Bilkent University, Bilkent,
06800 Ankara, Turkey

composite bosons which have undergone Bose—Einstein-
condensation (BEC) is a very exciting domain of research
in recent years. Such a transformation of ultracold atomic
gases can easily be realized by changing inter-atomic low
energy scattering length by means of Fano—Feshbach reso-
nance [1]. The experimental advances in cooling and trap-
ping techniques have introduced the possibility for studying
the BCS-BEC crossover more closely [2, 3].

Recent developments in the experimental front allows
one to look at a more intriguing aspect in ultracold atomic
gases, namely the effect of disorder. In the seminal work
of Anderson [4], it was shown that beyond some critical
amount of impurity in the electronic system, electrons get
localized in space. But a direct observation of Anderson lo-
calization in electronic systems is very difficult. On the other
hand, ultra-cold atoms make it possible to address the core
of the phenomenon that Anderson had discovered (exponen-
tial decay of the wavefunction), since they are genuine quan-
tum particles described as matter waves. The biggest advan-
tage of using ultracold atomic systems is the high level of
controllability and tunability of interaction (through exter-
nal magnetic field) and disorder (by means optical arrange-
ments). Recent experimental studies in Bose and Fermi sys-
tems [5-8] have provided further impetus on the issue of
disorder in cold atomic gases [9]. These investigations have
widened the possibility to study the crossover in the light of
disorder experimentally.

Theoretically, the static disorder in Fermi and in Bose
systems has been studied in the context of dirty supercon-
ductors [10-12] and Bose condensates [13, 14]. The last
decade has seen an enormous growth in the study of disor-
der in Bose gas (see, for instance, [5, 6, 9, 18]). The interest
in systems at unitarity is also gaining pace [15—18].

In this work, we investigate the BCS—BEC crossover with
weak uncorrelated disorder at zero temperature. We have
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followed the prescription of [15, 16] which is actually con-
nected with Nozieres and Schmitt—-Rink (NSR) theory [19]
of superconducting fluctuations. This enables us to solve the
modified density and gap equations with disorder as input
parameter self-consistently. We extend our analysis further
to compute condensate fraction which reveals an interesting
non-monotonic behavior and we discuss this result in the
light of the experimental observation of condensate fraction
in a clean Fermi gas [20].

We organize the rest of this paper as follows. In Section 2,
we summarize the basic formalism of [15, 21] to include
fluctuations at the mean-field level. Our results are presented
in Sect. 3, and we close with a conclusion in Sect. 4.

2 Model and Theory

To describe the effect of impurity in a Fermi superfluid in
the crossover from BCS to BEC regime, one needs to start
from the real space Hamiltonian in three-dimensions for a
s-wave superfluid,

VZ
=3 ol [‘E — Yy (x)}ba x)

+ [V X))o e, e ().

where @; (x) and @, (x) represent the creation and annihi-
lation of fermions with mass m and spin state o at X, respec-
tively. ¥4 (x) denotes the random impurity potential, and w is
the chemical potential. We set the Planck’s constant 2 = 1.
The s-wave fermionic interaction is defined by ¥ (x,x') =
—g8(x—x/), and g is the bare coupling strength of fermion—
fermion pairing. We choose the disorder as uncorrelated;
therefore, the range of the impurity should be much smaller
than the average separation between them. The disorder po-
tential is modeled as ¥;(x) = ) _; g48(x — X;) where g4
is a fermionic impurity coupling constant and x; are the
static positions of the quenched disorder. The correlation
function turns out to be (¥z(—q)7i(q)) = Biv, .ok while
q = (q,ivy). B is the inverse temperature, vy, is the bosonic
Matsubara frequency (v, = 2wm /B, with m being an inte-
ger)and k =n ,-ng, and n; is the impurity concentration.
The partition function corresponding to the Hamiltonian
in Eq. (1) can be written in the path integral formulation as

ff:/@[qS,@]exp[—y({qi}{qb})], 2)

where .7 is defined as foﬂ dt [dX[®43; Py + H]. A de-
tailed description of the formulation can be found in [21].
Here we present a brief sketch for the sake of complete-
ness. After introducing the pairing field (A(x, 7)) and its
fluctuation § A(x, ) about the homogeneous value (A) in
Eq. (2), the Hubbard—-Stratonovich transformation is carried
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out. Hence one can write the effective action in terms of the
Nambu propagator 4! (x, 7). The disorder and fluctuations
enter the self-energy term as ¥ = — %0, +8Ac; +8Ac_.
Thus, the Nambu propagator can be presented in the follow-
ingway, 9! =4, + 2, where 4, = —8,1 +(V?/2m +
wyo, + Aoy is the Green’s function without disorder and
fluctuations. Here o; are the Pauli and ladder matrices (i €
{x,y,z,4,—}). After integrating the fermionic fields, the
effective action becomes

B
%ff:/dX/ d‘L'|:|A(r)| — lTrln{—,Bgl(r)}}, (3)
0 g p

where r = (x, 7). It is possible to write the effective action
in Eq. (3) as a sum of bosonic action (.#g) and fermionic ac-
tion (.“F) by expanding the inverse Nambu propagator up to
the second order in self-energy (the lowest order in disorder
strength). Also it contains an additional term, which emerges
from the linear order of self-energy expansion (% X). We
can set the linear order to zero if we consider .7 to be an
extremum of Y after performing all the fermionic Mat-
subara frequency sums. The constrained condition leads to
the BCS gap equation which, after appropriate regulariza-
tion through the s-wave scattering length, reads [22]

m 1 1
- = ——— . 4
4ra Xk:[ZEk 2£ki| @
This suggests that the BCS gap equation does not have any
contribution from the disorder potential. The detailed calcu-

lation reveals that the disorder effect is embedded inside the

density equation through the bosonic thermodynamic poten-
a2

tial as ng = — B_MB' Hence the final mean-field density equa-
tion is
082
n=>Y (1~ k) 0% )
P Ey o

where §2p can be described in two parts. One contribution
comes from the fluctuation of the pairing fields and the other
from the disorder. The fluctuation contribution becomes sig-
nificant at finite temperature. Since we specialize at zero
temperature in this work, from this point on we will con-
sider only the disorder contribution which is defined as

Kk F -1
Q=5 Y, NN ©6)
q,v,=0
In Eq. (6), the .4 is a doublet which couples the disorder
to the fluctuations. At 7 = 0, after performing the fermionic
Matsubara frequency summation, one finds

AGk + Sk+q)
2E;Extq(Ex + Ek+q)

M=M=
k

(N

The inverse fluctuation propagator is a 2 x 2 symmetric ma-
trix and at zero temperature it reads
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k

1 1
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with #53(q) = #11(—q) and .4H1(q) = #12(q). The
other quantities are given in the usual BCS notation & =

K2/2m — p, Ex = \J&F + A%, u? = 1/2(1 + &/Ey), and
v = 1/2(1 — &/E).

3 Results and Discussion

Equations (4) and (5) are now ready to be solved self-
consistently, together with (7) and (8). It is clear that the dis-
order strength « is an input parameter; this initiates the ques-
tion about how to estimate the disorder strength as weak.
Firstly, « has a dimension of kg/ m?2, so in our analysis, we
define the dimensionless disorder strength as n = km?/ kg.
But a more physical description can be worked out if the im-
purity strength is normalized by Fermi density and square
of Fermi energy [16]. According to the this new definition,
/cnp/sf- = 4/(3w?)n. Thus, we calculate self-consistently
the basic mean field quantities A and w being inside this
limit for different values of 7.

Figure 1 demonstrates that on the BCS side the disor-
der does not have a significant influence. As a result the or-
der parameter with different disorder strengths follows the
mean-field approximation of A /ep = 8e2 exp[—m/(2kga)]
as 1/krpa — —o0, thus revealing the validity of Anderson
theorem [4], where the weak disorder is unable to break the
strongly coupled amplitude and phase coherence of the pair-
ing field.

In the BEC limit, it is possible to make analytic extension
for the bosonic thermodynamic potential by expanding the
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Fig. 1 The order parameter A scaled by the Fermi energy Ef as a
function of 1/(kra) and for various values of the disorder strength

inverse fluctuation propagator matrix elements in powers of
q [23]. A systematic and careful calculation leads to an an-
alytic description of the order parameter in this limit, where
one can observe a progressive depletion. Here the impurity
potential actually starts to destroy the superfluidity and, in
effect, the order parameter is depleted and the fraction of
depletion remains of the order of 1/(kpa) which is in agree-
ment with [15]. Hence Anderson theorem breaks down in
this limit. The other mean-field quantity, the chemical poten-
tial, remains pinned to the Fermi energy in the BCS limit and
follows the ideal path (without disorder) towards the BEC
limit, as seen Fig. 2. We understand that it might be an at-
tribute of the fluctuation theory [24], where the correction in
W at the BCS side is usually in 0(A?) which is a very small
quantity as A — 0 for 1/(kpa) — 0. On the BEC side, the
correction comes through the effective chemical potential of
the composite bosons. However, the BEC chemical poten-
tial is dominated by the binding energy, and it turns out to
be quite large compared to the effective chemical potential
(therefore, a more relevant normalization in BEC limit can
be binding energy which leads to saturation of the chemi-
cal potential at —1. However, to remain consistent, we pre-
sented both A and p in the units of Fermi energy). Hence
the chemical potential remain almost unchanged.

In the crossover window (which is usually considered as
1/(kpa) = [—1, 1]), one can now find the distinguishing fea-
tures of the order parameter (see Fig. 1) as a function of
disorder strength. Thus, from this figure one can clearly say
that the disorder starts to play its role in the crossover. At this
point, it is preferable to comment on the role of order param-
eter and disorder strength. As mentioned above, we work in
the weak disorder limit, therefore it can be considered as
homogeneous or quasi-homogeneous and the formalism of
pairing fluctuation suits well. In this limit, the local pairing
amplitude ({c cy)) is same as the off-diagonal long-range

order (ODLRO) ( (ch-cIc 1¢4)) and the spectral gap. Thus,
from Fig. 1 it can be concluded that the random impurity
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Fig. 2 The chemical potential u scaled by the Fermi energy EFf as a
function of 1/(kra) and for various values of the disorder strength
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Fig. 3 The condensate fraction shows a non-monotonic behavior in
the presence of disorder. The red line represents the mean field result in
clean Fermi gas and the open circles represents the condensate fraction
data from [20, 25]

starts to destroy the ODLRO even in the strongly correlated
crossover region. The story becomes completely different
when the disorder is strong as the condition of homogeneity
will break. In a practical scenario, for s-wave superconduc-
tors, the distribution of the local pairing amplitude looses
spatial uniformity, the ODLRO goes to zero and the spec-
tral gap increases non-monotonically [11]. In this work, the
weak disorder consideration simplifies the picture, but we
can still get a glimpse of the impurity driven situation where
the destruction of ODLRO can be viewed clearly.

The order parameter and the chemical potential are not
directly measurable, thus we switch our attention to a more
experimentally viable quantity, the condensate fraction (n.).
In a clean Fermi gas, it is possible to work out the conden-
sate fraction through mean-field theory [25] which shows
good agreement with the experiment [20]. Here we follow a
similar mean-field description

2
po— [ A(n) ] . ©)
— L 2Ex(n)

The only difference with the clean system calculation is that
in Eq. (9) we used the disorder induced values for A and u.
In Fig. 3, we present the mean-field result for the clean
Fermi gas, the disorder induced condensate fraction, and the
experimental data for the clean Fermi gas (°Li) [20]. As one
expects, the condensate fraction decays similar to that of the
clean limit when 1/(kpa) — —o0, as n. & A and A does not
change with the variation of 5 in the BCS regime. However,
if one extends the self-energy up to the second order in the
condensate fraction calculation, one can observe the effect
of disorder in the BCS limit [15]. In this limit, the experi-
mental data, theoretical clean Fermi gas calculation, and the
disorder modified results show good agreement with each
other.
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On the BEC side, the disorder destroys part of the con-
densate and turns it into a normal fluid. The condensate frac-
tion approaches roughly 1/+/kga as obtained from the study
of hard-sphere Bose gas in random disorder [13]. Interest-
ingly, we also observe a decay of the condensate fraction
in the experimental data. It is explained as the result of in-
elastic losses for the more tightly bound molecules [20]. In
our model, we have considered an elastic scattering process
through a static impurity, but we guess this model itself ren-
ders some information about the loss in condensate fraction
in the BEC side.

The non-monotonic behavior of the condensate fraction
in the crossover region (grey area in Fig. 3) is the most
intriguing point. One can see a significant amount of con-
densate fraction in this region in comparison to the two ex-
tremes of BCS and BEC sides. The peak of the condensate
fraction for the experimental data and disordered Fermi gas
lies in the region 1/(kpa) — 0. Thus, the experimental re-
sults and a simple model with quenched disorder qualita-
tively show similar features. In both cases, the loss of the
condensate fraction is due to additional scattering process.
That the most stable region is around unitarity may be re-
garded as a signal towards a relatively robust paradigm of
superfluidity [26].

4 Conclusion

In conclusion, we have included an impurity like weak dis-
order via the Gaussian fluctuation route and then solved
the coupled BCS mean-field equations self-consistently as a
function of the inter-particle interaction (controlled by kra)
to address the BCS to BEC crossover ultracold Fermi gases.
This enabled us to obtain the two basic mean-field parame-
ters A and u where we show that the order parameter is de-
pleted but the chemical potential is unchanged. The gradual
decrease of A can be connected to the destruction of super-
fluidity. It is already known [13] that the random potential
destroys the superfluid nature in Bose gas, hence the super-
fluid order parameter gets depleted. Also it shows that the
destructive process begins around the resonance position. It
will be very interesting to study the crossover region under
the influence of a large impurity as it is still an unexplored
domain. Further, we qualitatively compared the disorder in-
duced condensate fraction with the experimental result for a
clean Fermi gas. In both cases, the condensate fraction fol-
lows the mean-field prediction in the BCS side whereas in
the BEC side it exhibits a drop. At unitarity, both show a
maximum of condensate fraction which might be connected
to the more stable region of superfluidity of the strongly cor-
related fermionic pairs. Our calculations thus are in good
qualitative agreement with the experimental results. There-
fore, we believe that a comprehensive weak disorder model
can shed some light to the Fermi gases in the BCS-BEC
CroSSover.
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