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Carbon emission regulation policies have emerged as mechanisms to control firms’ carbon emissions. To meet regulatory
requirements, firms can make changes in their production planning decisions or invest in green technologies. In this study,
we analyse a retailer’s joint decisions on inventory replenishment and carbon emission reduction investment under three
carbon emission regulation policies. Particularly, we extend the economic order quantity model to consider carbon emissions
reduction investment availability under carbon cap, tax and cap-and-trade policies. We analytically show that carbon emission
reduction investment opportunities, additional to reducing emissions as per regulations, further reduce carbon emissions while
reducing costs. We also provide an analytical comparison between various investment opportunities and compare different
carbon emission regulation policies in terms of costs and emissions. We document the results of a numerical study to further
illustrate the effects of investment availability and regulation parameters.

Keywords: green technology; carbon emissions; investment; economic order quantity

1. Introduction and literature review

Global warming, environmental disasters and increased public awareness about environmental issues are encouraging
countries to reduce greenhouse gas (GHG) emissions. The Kyoto Protocol, signed in 1997 by 37 industrialised countries and
European Union (EU) members, enabled nations to aggregately focus on GHG emission abatement. Several government
programs (e.g. the EU Emissions Trading System, the New Zealand Emissions Trading Scheme, the US’Regional Greenhouse
Gas Initiative), private voluntary-membership organisations (e.g. the Chicago Climate Exchange, the Montreal Climate
Exchange) and many emissions-offset companies have emerged as control mechanisms over firms’GHG emissions, primarily
carbon emissions (other GHG emissions can be measured in terms of equivalent carbon emissions, see, e.g. EPA 2013). To
reduce carbon emissions, policy-makers either provide incentives to achieve emission reduction or impose costs on carbon
emissions.

Under carbon emission regulation policies, firms seek cost-efficient methods to decrease emissions, mainly through
replanning (changing) their operations and investing in carbon emission abatement (Bouchery et al. 2011). A firm can
reduce its carbon emissions level via changing its production, inventory, warehousing, logistics and transportation operations
(Benjaafar, Li, and Daskin 2013; Hua, Cheng, and Wang 2011). For instance, after 60,000 suppliers of Wal-Mart decreased
their packaging by 5% upon Wal-Mart’s request, they achieved 667,000 m3 of CO2 emission reduction (Hoffman 2007).
Hewlett-Packard (HP) reported that they decreased toxic inventory release to the air from 26.1 tonnes to 18.3 tonnes in 2010
by adjusting operations (HP 2011).

Afirm can also reduce its carbon emissions level by directly investing in carbon emission reduction projects such as greener
transportation fleets (see, e.g. Bae, Sarkis, and Yoo 2011), energy-efficient warehousing (see, e.g. Ilic, Staake, and Fleisch
2009) and environmentally friendly manufacturing processes (see, e.g. Liu, Anderson, and Cruz 2012). McKinsey & Com-
pany reports that US carbon emissions can be reduced by three to 4.5 gigatons in 2030 using tested approaches and high-
potential technologies (Creyts et al. 2007).Additional to directly investing in carbon emission reduction projects that decrease
emissions from internal operations, companies can indirectly invest in carbon emission reduction by purchasing carbon offsets
(see, e.g. Benjaafar, Li, and Daskin 2013; Song and Leng 2012), which can compensate for a company’s carbon emissions
and be used to increase its carbon emissions cap. Carbon-offset projects are referred to as clean development mechanisms
(CDM) under the Kyoto Protocol. The United Nations Framework for Convention on Climate Change provides a list of
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CDM; see, e.g., http://cdm.unfccc.int/. The World Bank reports that the global carbon market, including traded allowances
and offset transactions, reached $176 billion in 2011 (Kossoy and Guigon 2012).

Common carbon emission regulations include cap, cap-and-trade and tax policies. Under the cap policy, a firm’s carbon
emissions should not exceed a predetermined amount, which is referred to as a carbon cap. The cap can be determined by
a government agency and/or the firm’s green goals (Chen, Benjaafar, and Elomri 2013). Under the cap-and-trade policy,
carbon emissions are tradable through a system such as the EU Emissions Trading System or the New Zealand Emissions
Trading Scheme; a firm can buy or sell carbon allowances at a specified market price. Under the tax policy, a firm is charged
for its carbon emissions through taxes. In this paper, we study a retailer’s joint decisions on inventory replenishment and
carbon emission reduction investment under these three policies.

As the world economy becomes increasingly conscious of the environmental concerns, evidence suggests that companies
who make better business decisions to consider the interests of other stakeholders, including the human and natural
environments, will succeed (Jaber 2009). While the environmental regulation policies aim to protect consumers, employees
and the environment, cost of compliance should not deter companies to do business. Inventories play an important role
in the operations and the profitability of a company. Therefore, one of our goals in this paper is to provide guidance to
the companies to make better inventory decisions while utilising the available environmental technologies under different
regulation policies. Our other purpose is to help policy-makers understand the implications of each regulation policy on
the profitability of a company, and the role that green technologies play in the resulting carbon emissions and costs of the
company.

Most papers focusing on replanning inventory replenishment decisions for environmental considerations, study the
classic economic order quantity (EOQ) setting. Hua, Cheng, and Wang (2011) analyse the EOQ model under the cap-and-
trade policy. They investigate how replenishment decisions, costs and carbon emissions change with the market price of
carbon trading. Chen, Benjaafar, and Elomri (2013) study the EOQ model with the cap policy and examine its effects on
carbon emissions and costs. They also discuss the applicability of their results under tax, cap-and-offset and cap-and-price
policies. Our study is similar to Hua, Cheng, and Wang (2011) and Chen, Benjaafar, and Elomri (2013) in that we also
take the perspective of a retailer operating in the EOQ environment and consider the existence of a carbon regulation
policy. However, ours is more general due to the fact that we study the retailer’s investment decisions along with his/her
replenishment decisions. It should be noted that there are also studies that propose extensions of the EOQ model with
environmental considerations in the absence of carbon emission regulation policies. For instance, Bonney and Jaber (2011)
introduce costs into the EOQ model associated with carbon emissions and disposed wastes due to transportation and
inventory operations. Bouchery et al. (2012) formulate a multi-objective EOQ model that minimises costs and environmental
damages. It is worthwhile noting that along with the ordering decisions in the EOQ setting, the product-mix problem
(Letmathe and Balakrishnan 2005), dynamic economic lot sizing problem (Absi et al. 2013; Benjaafar, Li, and Daskin 2013),
single-period stochastic replenishment problem (Song and Leng 2012), transport mode selection (Hoen et al. 2013) and two-
echelon production planning (Jaber, Glock, and El Saadany 2013; Saadany, Jaber, and Bonney 2011) are among the issues
that have been revisited in regard to environmental considerations.

As noted, leading companies in their sectors invest to decrease the environmental effects of their products and production
and logistical processes, or to curb emissions through offset projects. Although investment decisions for environmental
considerations is still a developing area in the operations research and management science literature, it is possible to
classify the related studies in three groups. The first group of papers study the ordering and investment decisions in
settings where consumer demand is sensitive to the environmental quality of the product, which in turn, can be increased
through investment (e.g. Swami and Shah 2013; Zavanella et al. 2013). Note that these studies do not consider any regulation
policies; the only motivation for investing in greening efforts is to increase demand by improving customers’ perception
of the product. The second group of papers model carbon offset investments when a cap-and-offset policy is in place (e.g.
Benjaafar, Li, and Daskin 2013; Chen, Benjaafar, and Elomri 2013; Song and Leng 2012). A cap-and-offset policy can be
considered as a mix of cap and cap-and-trade policies. It differs from a cap policy in that the carbon allowance can be increased
with offset investments. It differs from a cap-and-trade policy in that it does not allow carbon allowances to be tradable.
The second group of studies exhibit two important characteristics. First, all three papers (i.e. Benjaafar, Li, and Daskin 2013;
Chen, Benjaafar, and Elomri 2013; Song and Leng 2012) assume unit reduction in carbon emissions per unit investment
(which is included as an additional component in the cost function). Second, this type of investment modelling (i.e. offset
investments) is not relevant within the context of other regulation policies. The final group of studies consider investing
in technology to reduce emissions under a regulation policy. We have identified only one paper that falls into this group,
i.e. Jiang and Klabjan (2013), taking a firm’s perspective to analyse the effects of investment decisions on the profitability
and carbon emissions. Our paper also contributes to the third group of literature by modelling and solving a retailer’s
joint inventory replenishment and carbon emission reduction investment decisions under each of the three stated carbon
emission regulation policies. Examples of investment opportunities for emission reduction include purchasing more efficient
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electric appliances (lights, refrigerators, etc.); improving the energy efficiency of existing appliances and equipment related
to lighting, air-conditioning, water heating; fuel switching; deriving energy through renewable energy sources.

Jiang and Klabjan (2013) analyse production and carbon emission reduction investment decisions under different regu-
lation policies (i.e. cap-and-trade, command-and-control). They consider a setting in which carbon trading price and demand
are stochastic, and assume a linear investment function. The decision-maker first decides on production capacity and
carbon emission reduction investment, and then, after the carbon trading price and demand are realised, the operations
are adjusted. The authors extend this model to analyse investment timing decisions in two periods. Our paper differs from
Jiang and Klabjan (2013) in two major ways. First, we analyse the classic EOQ model with an investment option under cap, tax
and cap-and-trade policies. Second, we consider a non-linear investment function. We treat the investment amount as capital
expenditure, similar to Billington (1987), that is, some amount of money is invested per unit time and the reduction in carbon
emissions per unit time is a function of the invested money. We benefit from Huang and Rust (2011) in creating a correlation
between investment and carbon emission reduction. Huang and Rust (2011) note that spending on green technologies has
decreasing marginal returns in pollution/environmental damage reduction. Therefore, the firm’s carbon emission reduction
per unit time is assumed to be an increasing concave function of the investment money per unit time. Through this
functional form, we generalise the linear relation (i.e. constant marginal returns of the investment amount in carbon emission
reduction) assumed by Benjaafar, Li, and Daskin (2013), Chen, Benjaafar, and Elomri (2013), Jiang and Klabjan (2013), and
Song and Leng (2012).

We provide a solution method for a retailer’s joint inventory control and carbon emission reduction investment decisions
for each carbon regulation policy considered. The resulting optimal values of the order quantity and the yearly investment
amount under a certain policy simultaneously minimise the retailer’s average annual costs if that policy is in place. Following
this analysis, we compare the retailer’s annual costs and carbon emissions with and without investment availability under
each carbon regulation policy. We analytically show that availability of carbon emission reduction investment, additional
to the reductions achieved by carbon emission regulation policies, further reduces carbon emissions while reducing costs
under the tax and cap-and-trade policies. Under the cap policy, the resulting emissions level does not decrease due to
investment; however, the same emissions level is achieved with lower costs. Therefore, we conclude that it is more important
for governments to stimulate green technology under the tax and cap-and-trade policies. Several investment options with
varying cost and carbon emission reduction characteristics may be available to the retailer. The retailer may thus need to select
one investment opportunity. We provide analytical and numerical comparisons of the resulting costs and carbon emissions
between different investment opportunities available to the retailer under each carbon emission regulation policy.

Our analysis enables comparing carbon emission regulation policies with the carbon emission reduction investment
option. Our results indicate that when the retailer can invest in carbon emission reduction, compared to a given tax policy,
a cap policy that will lower costs and not increase carbon emissions is possible. Furthermore, we show that for any given
cap policy, there exists a cap-and-trade policy that will lower costs and carbon emissions. Further analytical and numerical
results are discussed about the effects of policy parameters on the retailer’s costs and emissions. These results can be utilised
by policy-makers in legislating carbon emissions or in constructing specific carbon emission regulation policies.

The rest of the paper is organised as follows: In Section 2, we describe the setting and the problem in more detail. Section 3
presents solutions for the retailer’s order quantity and carbon emission reduction investment decisions under cap, tax and
cap-and-trade policies. In this section, we also present the analytical results on the benefits of the carbon emission reduction
investment option and the comparison of different carbon emission reduction investment opportunities. We compare the
carbon regulation policies in Section 4 and summarise our numerical studies in Section 5. We conclude the paper with some
final remarks in Section 6.

2. Problem definition

In this study, a retailer’s emission reduction investment and inventory replenishment decisions are analysed under different
government regulations on carbon emissions. It is assumed that the retailer operates under the conditions of the classical
EOQ model. That is, the retailer orders Q units at each replenishment to meet deterministic and steady demand on time in
the infinite horizon. In the setting of interest, there is significant carbon emission due to ordering, inventory holding and
procurement. The carbon emitted per replenishment, per-unit purchase and per-unit per-year inventory holding amount to Â,
ĉ and ĥ, respectively.

We consider three different carbon emission policies: cap, tax and cap-and-trade. Under the cap policy, the retailer’s
carbon emissions per year cannot exceed an emission cap, denoted by C . Under the tax policy, the retailer is taxed p
monetary units for unit carbon emission. Under the cap-and-trade policy, the retailer can trade a unit carbon emission for
a value of cp monetary units. These policies are intended to reduce carbon emissions by affecting the retailer’s operations;
however, the retailer can also reduce his/her carbon emissions by investing in new technology, equipment or machinery.
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Table 1. Problem parameters and decision variables.

Retailer’s parameters
A Fixed cost of inventory replenishment
h Cost of holding one unit inventory for a year
c Unit procurement cost
D Demand per year
Â Carbon emission amount due to inventory replenishment
ĥ Carbon emission amount due to holding one unit inventory for a year
ĉ Carbon emission amount due to unit procurement

Policy parameters
i Carbon policy index; i = 1 for cap, i = 2 for tax, and i = 3 for cap-and-trade policies
C Annual carbon emission cap
p Tax paid for one unit of emission
cp Unit carbon emission trading price

Retailer’s decision variables
Q Order quantity
G Annual investment amount for carbon emission reduction
X Traded quantity of emission capacity in cap-and-trade policy

Functions and optimal values of decision variables
T C(Q, G) Total average annual costs as a function of Q and G without a carbon policy
E(Q, G) Carbon emissions per year as a function of Q and G
T Ci (Q, G) Total average annual costs as a function of Q and G under carbon policy i
Q∗

i Optimal order quantity under carbon policy i
G∗

i Optimal investment amount under carbon policy i

Mainly, annual carbon emission can be decreased in an amount of αG − βG2 in return for G monetary units invested per
year

(
0 ≤ G ≤ α

β

)
. Here, α reflects the efficiency of green technology in reducing emissions, and β is a decreasing return

parameter (Huang and Rust 2011). In each case, the problem is to find the order quantity and the investment amount that
jointly minimise the retailer’s total average annual costs. Table 1 summarises the notation used in the paper. Additional
notation will be defined as needed.

Without any carbon emission policy in place, the total average annual costs due to ordering, inventory holding, procure-
ment and investment is given by

T C(Q, G) = AD

Q
+ hQ

2
+ cD + G, (1)

and the total average annual emission amount is given by

E(Q, G) = ÂD

Q
+ ĥQ

2
+ ĉD − αG + βG2. (2)

When the retailer makes no investment, i.e. G = 0, Expression (1) provides the total average annual costs in the EOQ

model, and its value is minimised at Q0 =
√

2AD
h , which we refer to as the ‘cost-optimal quantity’. If there is no carbon

emission policy in place, (Q0, 0) will in fact be the optimising pair of order quantity and investment amount for the retailer.
Furthermore, it follows from Expression (2) that

√
2 Âĥ D + ĉD is the minimum average annual carbon emission possible

without investment, and is achieved when the retailer orders Qe =
√

2 ÂD
ĥ

units, which we refer to as the ‘emission-optimal

quantity’.
The problem parameters are assumed to satisfy the following conditions:

(A1) The minimum annual carbon emission possible due to ordering decisions is more than the maximum yearly emission
reduction possible due to investment decisions. That is,

√
2 Âĥ D + ĉD >

α2

4β
. (3)
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(A2) For the tax policy under consideration, there exists a value of G > 0 at which savings in taxes when G monetary
units are invested in new technology to reduce carbon emissions exceeds the cost of investment. Hence, we have

αp > 1. (4)

(A3) For the cap-and-trade policy under consideration, there exists a value of investment amount G > 0 at which more
reduction in carbon emissions can be achieved by investing in new technology rather than purchasing carbon capacity
at a total value of G monetary units. Hence, we have

αcp > 1. (5)

(A4) For the cap policy under consideration, there exist values of the investment amount that can reduce the annual carbon
emission to below carbon capacity. Hence, we have√

2 Âĥ D + ĉD − α2

4β
< C. (6)

The right-hand side of Inequality (3), that is, α2

4β
, is the maximum possible value of annual carbon emission reduction

and is achieved when G = α
2β

. Recall that
√

2 Âĥ D + ĉD is the minimum possible value of yearly carbon emissions due to
ordering decisions. An implication of Assumption (A1), therefore, is that carbon emissions cannot be completely eliminated
with new technology. Assumption (A2), in mathematical terms, is equivalent to saying that there exists some G > 0 at which
(αG − βG2)p > G. Dividing both sides of this inequality by G and considering the fact that βGp > 0 leads to αp > 1. If
Assumption (A2) does not hold, then any investment to reduce carbon emissions does not pay off, and hence, an investment
decision should not be of concern. Similarly, Assumption (A3) can be written as αG − βG2 > G

cp
for some positive value of

G, which in turn implies αcp > 1. Finally, Assumption (A4) is necessary for the retailer to be in business under the current

cap policy. If the minimum carbon emission possible (i.e.
√

2 Âĥ D + ĉD − α2

4β
) due to ordering and investment decisions

were more than the cap C , then there would be no feasible solution to the retailer’s inventory problem.

3. Analysis under different carbon emission policies

In this section, we solve the retailer’s integrated problem of finding the optimal order quantity and carbon emission reduction
investment under the three carbon emission regulation policies: cap, tax and cap-and-trade. We represent the optimal solution
under each policy i as a pair of values (Q∗

i , G∗
i ). The proofs of all our results are presented in the Appendix.

Recall that, by definition of the investment function, there exists an upper bound on G, that is, G ≤ α
β

. We do not include
this restriction as a constraint because the nature of our formulations for all emission regulations makes it redundant. That is,
the investment value in all optimal solutions without incorporating G ≤ α

β
already satisfies this constraint. In fact, due to the

strict concavity of αG − βG2 with respect to G and the fact that α
2β

is its unique maximiser, for every investment value that
is greater than α

2β
, the corresponding reduction in annual carbon emission can be achieved by a smaller investment amount

within the range 0 ≤ G ≤ α
2β

. Therefore, the optimal investment value will always be less than or equal to α
2β

. The optimal
solutions for the cap, tax and cap-and-trade policies, as they are stated in Theorems 1–3, justify these observations.

3.1 Cap policy

Under a cap policy, the retailer is subject to an upper bound, that is an ‘emission cap’, on the total average annual carbon
emission. The retailer’s problem is to find the optimal order quantity and the investment amount to minimise average annual
total cost without exceeding the emission cap C . This problem can be formulated as follows:

min T C1(Q, G) = AD

Q
+ hQ

2
+ cD + G

s.t.
ÂD

Q
+ ĥQ

2
+ ĉD − αG + βG2 ≤ C,

Q ≥ 0, G ≥ 0.
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248 A. Toptal et al.

Note that, when G = 0, there exists a feasible solution to the above problem as long as C ≥
√

2 Âĥ D + ĉD. Given that
G = 0, the feasible region consists of all pairs (Q, 0) such that Q1 ≥ Q ≥ Q2,
where

Q1 = C − ĉD +
√

(C − ĉD)2 − 2 Âĥ D

ĥ
(7)

and

Q2 = C − ĉD −
√

(C − ĉD)2 − 2 Âĥ D

ĥ
. (8)

Q1 and Q2 are the two roots of ÂD
Q + ĥQ

2 + ĉD = C . It is important to note that the existence of Q1 and Q2

depend on how (C − ĉD) compares to
√

2 Âĥ D, and is not guaranteed. In fact, in Theorem 1, we characterise the optimal
solution to the retailer’s problem in two parts, considering the following two cases: (i) C ≥

√
2 Âĥ D + ĉD and (ii)√

2 Âĥ D + ĉD − α2

4β
< C <

√
2 Âĥ D + ĉD. In the latter case, the restriction on the maximum carbon emission cannot be

overcome only by ordering decisions, the retailer must also take advantage of investment opportunities. Assumption (A4)
guarantees that there exists a feasible solution in this case. Prior to stating the retailer’s optimal order quantity and investment
decisions under a cap policy, let us also introduce the following solution pairs:

(Q3, G3) =
⎛
⎝ (C − ĉD + αG3 − βG2

3) +
√

(C − ĉD + αG3 − βG2
3)

2 − 2 Âĥ D

ĥ
,

2D(Aα + Â) − Q2
3(αh + ĥ)

2β(2AD − Q2
3h)

⎞
⎠ ,

(Q4, G4) =
⎛
⎝ (C − ĉD + αG4 − βG2

4) −
√

(C − ĉD + αG4 − βG2
4)

2 − 2 Âĥ D

ĥ
,

2D(Aα + Â) − Q2
4(αh + ĥ)

2β(2AD − Q2
4h)

⎞
⎠ ,

(Q5, G5) =

⎛
⎜⎜⎝Qe,

α −
√

α2 − 4β
(
−C + ĉD +

√
2 ÂDĥ

)
2β

⎞
⎟⎟⎠ .

Note that ÂD
Q + ĥQ

2 + ĉD − αG + βG2 = C when (Q, G) is any one of the pairs (Q3, G3), (Q4, G4), and (Q5, G5).

For 0 ≤ G ≤ α
2β

, it can be shown that
Q3 ≥ Q1 ≥ Q2 ≥ Q4. (9)

As characterised in the next theorem and its proof, the optimal solution to the retailer’s problem under the cap policy is
given by one of the following pairs: (Q0, 0), (Q1, 0), (Q2, 0), (Q3, G3), (Q4, G4), and (Q5, G5). If (Q∗

1, G∗
1) = (Q0, 0),

then the cost-optimal solution satisfies the emission constraint already. If (Q∗
1, G∗

1) = (Q1, 0) or (Q∗
1, G∗

1) = (Q2, 0), then
the retailer is able to satisfy the emission constraint by ordering a quantity other than the cost-optimal one while not making
any investment. In other cases where G∗

1 > 0, the retailer minimises his/her costs under the emission constraint by investing
in new technology besides carefully made ordering decisions.

Theorem 1 Under a cap policy, the optimal pair of the retailer’s replenishment quantity and his/her investment amount
is as follows:

If C ≥
√

2 Âĥ D + ĉD then,

(Q∗
1, G∗

1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Q0, 0) if Q2 ≤ Q0 ≤ Q1,

(Q1, 0) if Qα < Q1 < Q0,

(Q3, G3) if Qe < Q3 ≤ Qα,

(Q2, 0) if Q0 < Q2 < Qα,

(Q4, G4) if Qα ≤ Q4 < Qe,

and if
√

2 Âĥ D + ĉD − α2

4β
< C <

√
2 Âĥ D + ĉD, then

(Q∗
1, G∗

1) =
⎧⎨
⎩

(Q3, G3) if Qe < Q3 ≤ Qα,

(Q4, G4) if Qα ≤ Q4 < Qe,

(Q5, G5) o.w.,

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
1:

45
 2

4 
A

pr
il 

20
14
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where Qα =
√

2( Â+Aα)D
ĥ+hα

.

The result that will be highlighted next, applies to the special case of the problem where Â
ĥ

= A
h , and is a consequence of

Theorem 1 and its proof.

Remark 1 If Â
ĥ

= A
h , the optimal replenishment quantity is always given by the cost-optimal solution Q0, which is equal to

the emission-optimal solution Qe. However, if C ≥
√

2 Âĥ D + ĉD, then G∗
1 = 0, and if C <

√
2 Âĥ D + ĉD, then G∗

1 > 0.

It is worthwhile to note that, when there is no investment opportunity for carbon emissions reduction, Theorem 1 coincides
with the results of Chen, Benjaafar, and Elomri (2013). The next corollary presents the annual carbon emission level resulting
from the retailer’s optimal decisions as given in Theorem 1.

Corollary 1 The average annual carbon emission resulting from the retailer’s optimal solution under a cap policy is

E(Q∗
1, G∗

1) =
⎧⎨
⎩

√
D( Âh+ĥ A)√

2Ah
+ ĉD if Q2 ≤ Q0 ≤ Q1,

C o.w.

As seen in Corollary 1, the maximum carbon emissions per year are bounded by C . However, as long as C is not binding
such that Q2 ≤ Q0 ≤ Q1, annual carbon emissions are linearly increasing with Â and ĥ. For those nonbinding C values,
annual carbon emissions are also dependent on an A/h ratio, and in fact, increases with A/h if A

h > Â
ĥ

. Furthermore, the
carbon emissions level is not dependent on investment parameters α and β.

In the next lemma, we investigate the impact of having an investment option for carbon emission reduction on the retailer’s
annual emission level under a cap policy. In doing this, we consider the following two measures: E

(
Q∗

1(0), 0
)− E

(
Q∗

1, G∗
1

)
and T C1

(
Q∗

1(0), 0
) − T C1

(
Q∗

1, G∗
1

)
. We use the notation Q∗

1(0) to refer to the retailer’s optimal replenishment quantity
under a cap policy, given that the investment amount is zero. Note that, a feasible value for Q∗

1(0) may not always exist,

specifically when C <
√

2 Âĥ D + ĉD. The lemma, which will be presented without a proof, follows from Corollary 1 and the
expression for E

(
Q∗

1(0), 0
)

provided in Chen, Benjaafar, and Elomri (2013). The result applies to cases in which a feasible
value of Q∗

1(0) can be found.

Lemma 1 Having an investment opportunity for carbon emission reduction does not change the annual carbon emission
level under a cap policy, however, it may lead to lower average annual costs for the retailer. That is, E

(
Q∗

1(0), 0
) −

E
(
Q∗

1, G∗
1

) = 0 and T C1
(
Q∗

1(0), 0
) − T C1

(
Q∗

1, G∗
1

) ≥ 0.

If C <
√

2 Âĥ D + ĉD and an investment option is not available for the retailer to reduce his/her carbon emissions,
there is no feasible replenishment quantity, and therefore it does not make sense for him/her to be in business. Therefore, in
such cases, the savings in costs due to having an investment option may as well be considered as infinity. Note that when
C ≥

√
2 Âĥ D + ĉD, Q∗

1(0) is given by Q0 if Q2 ≤ Q0 ≤ Q1, by Q2 if Q0 < Q2, and by Q1 if Q1 < Q0. The optimal
(Q, G) pairs in the problems with and without the investment option coincide in those cases. Therefore, the savings in costs
due to investment can be strictly positive only under the circumstances in which C ≥

√
2 Âĥ D + ĉD, and the solution to the

problem with investment option is given by either (Q3, G3) or (Q4, G4).
Next, we study the effects of a cap policy on the retailer’s annual carbon emissions and costs in comparison to a case where

there is no governmental regulation. In the latter case, the retailer orders Q0 units and makes no investment for emission
reduction.

Lemma 2 Under a cap policy, the retailer’s optimal decisions for replenishment quantity and investment amount may
reduce the yearly carbon emissions with an annual cost that is no less than what it would be when no emission policy is in
place. That is, T C1

(
Q∗

1, G∗
1

) ≥ T C
(
Q0, 0

)
and E

(
Q∗

1, G∗
1

) ≤ E
(
Q0, 0

)
.

Under any of the emission regulation policies, there may exist investment options with different parameters α and β. If
this is the case, then the retailer must choose among different investment options. The result presented in the next lemma
may help the retailer to make such a decision when a cap policy is in place.

Lemma 3 Let us consider two feasible investment options (i.e. they satisfy Assumption (A4)): one with parameters α1 and
β1, and the other with parameters α2 and β2. If β2 ≥ β1 and α2 ≤ α1, then under the first investment option, there exists a
solution which leads to the same annual emission level with no more costs.
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250 A. Toptal et al.

The above lemma implies that between two different investment options, the retailer should choose the one with higher α

and smaller β. If the investment option with higher α does not also have smaller β, we will show, in the numerical analysis in
Section 5, that the problem parameters determine which investment option is better in terms of costs. Recall from Corollary 1
that the annual carbon emissions level under the cap policy is independent of the investment parameters α and β. Therefore,
annual costs due to each investment option is the only criterion that determines which investment option is better.

3.2 Tax policy

Under a tax policy, the retailer pays p monetary units in taxes for unit carbon emission. There is no restriction on the maximum
carbon emissions. The retailer’s problem can be formulated as follows:

min T C2(Q, G) = AD

Q
+ hQ

2
+ cD + G + pE(Q, G)

s.t. E(Q, G) = ÂD

Q
+ ĥQ

2
+ ĉD − αG + βG2,

Q ≥ 0, G ≥ 0.

The following theorem characterises the solution to the above problem:

Theorem 2 Under a tax policy, the optimal pair of retailer’s replenishment quantity and his/her investment amount is
given by

(Q∗
2, G∗

2) =
⎛
⎝
√

2(A + Â p)D

h + ĥ p
,
αp − 1

2pβ

⎞
⎠ .

It can be observed that G∗
2 is increasing with p. Furthermore, Q∗

2 is increasing with p when A
h < Â

ĥ
, Q∗

2 is decreasing

with p when A
h > Â

ĥ
, and Q∗

2 is not affected by p when A
h = Â

ĥ
. In fact, when A

h = Â
ĥ

, we have Q∗
2 = Q0 = Qe. The next

corollary, which will be presented without a proof, follows from plugging the expressions for Q∗
2 and G∗

2 in the emission
function and the cost function.

Corollary 2 The average annual carbon emission and the average annual cost resulting from the retailer’s optimal
solution under a tax policy are

E
(
Q∗

2, G∗
2

) =
√

D
[

Â(h + pĥ) + ĥ(A + p Â)
]

√
2(A + p Â)(h + pĥ)

+ 1 − α2 p2

4p2β
+ ĉD, (10)

T C2
(
Q∗

2, G∗
2

) =
√

2(A + p Â)(h + pĥ)D + D(c + ĉ p) − (αp − 1)2

4pβ
. (11)

It can be verified byAssumptions (A1) and (A3) that E
(
Q∗

2, G∗
2

)
and T C2

(
Q∗

2, G∗
2

)
are positive. E

(
Q∗

2, G∗
2

)
is decreasing

in p and T C2
(
Q∗

2, G∗
2

)
is increasing in p. In the next lemma, we quantify the reduction in emissions and the savings in costs

due to the investment option. For this purpose, we consider the following two measures: E
(
Q∗

2(0), 0
) − E

(
Q∗

2, G∗
2

)
and

T C2
(
Q∗

2(0), 0
) − T C2

(
Q∗

2, G∗
2

)
. Here, Q∗

2(0) refers to the retailer’s optimal replenishment quantity under the tax policy,
given that the investment amount is zero.

Lemma 4 Under a tax policy, having an investment opportunity for carbon emission reduction leads to positive savings
in annual carbon emissions and in annual costs, as quantified by the following:

E
(
Q∗

2(0), 0
) − E

(
Q∗

2, G∗
2

) = α2 p2 − 1

4p2β
, T C2

(
Q∗

2(0), 0
) − T C2

(
Q∗

2, G∗
2

) = (αp − 1)2

4pβ
.

Lemma 4 along with Assumption (A2) imply that the reduction in annual costs and the reduction in annual carbon
emissions due to utilising the investment opportunity are both increasing in p. The reduction in annual carbon emissions
is bounded by α2

4β
and its rate of change with increasing p decreases. This, in turn, implies that if the government further

increases the tax for one unit of emission at its already large values, a retailer investing in new technology does very little to
reduce emissions. However, the retailer still invests in new technology because he/she can reduce his/her costs significantly
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by means of tax savings. Note that the total taxes the retailer must pay may be very large at high values of p, therefore, even
a marginal reduction in emissions may save the retailer a lot of money.

In the next lemma, we study the effects of the carbon tax policy on the retailer’s annual carbon emissions and costs.
Without a carbon emission policy in place, the retailer minimises Expression (1), and he/she orders Q0 units and makes no
investment in emissions reduction.

Lemma 5 Under a tax policy, the retailer’s cost-optimal decisions for replenishment quantity and investment amount lead
to lower annual emissions and higher annual costs, in comparison to a case with no emission policy. That is, T C2

(
Q∗

2, G∗
2

)
>

T C
(
Q0, 0

)
and E

(
Q∗

2, G∗
2

)
< E

(
Q0, 0

)
.

The above lemma implies that a tax policy is effective in reducing a retailer’s annual carbon emissions, but it increases
the retailer’s annual costs even if he/she has access to an investment opportunity for carbon emission reduction. In what
follows, we compare two investment opportunities under the tax policy.

Lemma 6 Let us consider two investment options: one with parameters α1 and β1, and the other with parameters α2 and
β2. When a tax policy is in place, the retailer’s annual costs and emissions under one option compare to those under another
in the following way:

• If β2 ≥ β1 and α2 ≤ α1, then the first investment option (i.e. the one with parameters α1 and β1) leads to no greater
annual emissions and no greater annual costs for the retailer than the second investment option does.

• If β2 ≥ β1 and α2 > α1, then

◦ If the second investment option leads to greater annual costs than the first one does, then it also results in
greater annual emissions.

◦ If the second investment option leads to annual costs lower than or equal to the first one, then it results in
lower annual emissions if 1−α2

2 p2

β2
<

1−α1
2 p2

β1
holds, otherwise, it results in no lower annual emissions than

the first investment option does.

3.3 Cap-and-trade policy

Under a cap-and-trade policy, similar to the cap policy, the retailer is subject to an emissions cap, C , on the total carbon
emissions per year. However, if the annual carbon emission is more than the cap C , the firm can buy carbon permits equivalent
to its excess demand for carbon capacity, at a market price of cp monetary units per unit emission. On the other hand, if the
retailer’s annual carbon emission is lower than the carbon cap, she/he can sell the extra carbon capacity at the same market
price, i.e. cp. It is assumed that carbon permits are always available for buying and selling. In particular, let X denote the
carbon amount the retailer trades annually. X > 0 indicates a case in which the retailer sells his/her carbon permits, whereas
X < 0 implies a case in which the retailer purchases carbon permits. The retailer’s problem of deciding the replenishment
quantity and the investment amount is formulated below.

min T C3(Q, G) = AD

Q
+ hQ

2
+ cD + G − Xcp

s.t.
ÂD

Q
+ ĥQ

2
+ ĉD − αG + βG2 + X = C,

Q ≥ 0, G ≥ 0.

In the following theorem, we present the solution to the above problem:

Theorem 3 Under a cap-and-trade policy, the optimal pair of retailer’s replenishment quantity and his/her investment
amount is given by

(Q∗
3, G∗

3) =
⎛
⎝
√√√√2(A + Âcp)D

h + ĥcp
,
αcp − 1

2cpβ

⎞
⎠ .

It then follows that X∗ = C − E(Q∗
3, G∗

3), where X∗ is the retailer’s optimal traded carbon amount per year.

Using the expression for G∗
3, one can show that G∗

3 is increasing with cp. Furthermore, Q∗
3 is increasing with cp when

A
h < Â

ĥ
, Q∗

3 is decreasing with cp when A
h > Â

ĥ
, and it is not affected by cp when A

h = Â
ĥ

. In case A
h = Â

ĥ
, we have

Q∗
3 = Q0 = Qe. The next three corollaries follow from Theorem 3.
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Corollary 3 If
√

2 Âĥ D + ĉD − α2

4β
> C, then the retailer does not sell any carbon permits (i.e. X ≤ 0), regardless of

what the carbon trading price cp is.

At high values of cp, the retailer may want to sell his/her permits in the market for extra revenue. However, Corollary 3
implies that if the cap is smaller than the minimum carbon emissions possible due to ordering and investment decisions, the
retailer must purchase carbon permits to be within the allowed limits of annual carbon emissions at any value of cp.

Corollary 4 The average annual carbon emissions and the average annual costs resulting from the retailer’s optimal
decisions under a cap-and-trade policy are

E(Q∗
3, G∗

3) =
√

D( Â(h + cpĥ) + ĥ(A + cp Â))√
2(A + cp Â)(h + cpĥ)

+ 1 − α2c2
p

4c2
pβ

+ ĉD, (12)

T C3(Q∗
3, G∗

3) =
√

2(A + cp Â)(h + cpĥ)D + D(c + ĉcp) − (αcp − 1)2

4cpβ
− cpC. (13)

Equation (12) implies that the carbon emissions level does not change with carbon cap C . Hua, Cheng, and Wang
(2011) obtain a similar result for the case when there is no investment option. It can be shown using Assumption (A3) that
E(Q∗

3, G∗
3) > 0; however, T C3(Q∗

3, G∗
3) may assume any value depending on the magnitude of C . If T C3(Q∗

3, G∗
3) < 0,

then the retailer has excess carbon capacity in such a large amount that by selling this amount he/she covers the inventory-
related costs and even makes a profit. (In practice, this should be avoided for the cap-and-trade policy to be effective.) Based
on this result, the next corollary proposes an upper bound on the value of C that the policy-maker should impose on the
retailer in this setting.

Corollary 5 Under a cap-and-trade policy with a carbon trading price cp, an upper bound on the carbon capacity C
is given by

C <

√
2(A + cp Â)(h + cpĥ)D + D(c + ĉcp) − (αcp−1)2

4cpβ

cp
.

To quantify the reduction in emissions and the savings in costs due to the investment option under a cap-and-trade policy,
in the next lemma we consider the following two measures: E

(
Q∗

3(0), 0
)−E

(
Q∗

3, G∗
3

)
and T C3

(
Q∗

3(0), 0
)−T C3

(
Q∗

3, G∗
3

)
.

Here, Q∗
3(0) refers to the retailer’s optimal replenishment quantity under the cap-and-trade policy, given that the investment

amount is zero.

Lemma 7 Under a cap-and-trade policy, having an investment opportunity for carbon emission reduction leads to positive
savings in annual carbon emissions and in annual costs, as quantified by the following:

E
(
Q∗

3(0), 0
) − E

(
Q∗

3, G∗
3

) = α2cp
2 − 1

4cp
2β

, T C3
(
Q∗

3(0), 0
) − T C3

(
Q∗

3, G∗
3

) = (αcp − 1)2

4cpβ
.

Lemma 7 and Assumption (A3) jointly imply that the reduction in annual costs and the reduction in annual carbon
emissions due to utilising the investment opportunity are both increasing in cp. The reduction in annual carbon emissions
is again bounded by α2

4β
, as in the case of the tax policy, and, its rate of change with increasing cp decreases. With an

interpretation similar to the one we developed for Lemma 4, it can be concluded that the incremental benefit of retailer’s
one-unit investment on emission reduction diminishes at large values of unit carbon emission trading prices. However, the
retailer still invests in new technology, because he/she can reduce his/her costs significantly either by creating excess carbon
capacity and selling it at high prices, or by avoiding the need to purchase excess capacity at high prices with the capacity
generated from new technology.

In the next lemma, we study the effects of the cap-and-trade policy on the retailer’s annual carbon emissions and costs.
For this purpose, we compare the annual carbon emissions and the annual costs in case of no government regulation to
the results in Corollary 4. Note that, in the former case, the retailer orders Q0 units and makes no investment in emission
reduction.

Lemma 8 Under a cap-and-trade policy, the retailer’s cost-optimal decisions for replenishment quantity and investment
amount lead to lower annual emissions in comparison to a case with no emission policy. That is, E

(
Q∗

3, G∗
3

)
< E

(
Q0, 0

)
.

However, annual costs may increase or decrease depending on C. Specifically, we have T C3
(
Q∗

3, G∗
3

) ≤ T C
(
Q0, 0

)
if

C ≥
√

2(A+ Âcp)(h+ĥcp)D−√
2Ah D

cp
− (αcp−1)2

4c2
pβ

+ ĉD, and we have T C3
(
Q∗

3, G∗
3

)
> T C

(
Q0, 0

)
otherwise.
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The next lemma, which will be presented without a proof, presents a result for the cap-and-trade policy, similar to the one in
Lemma 6 for the tax policy.

Lemma 9 Let us consider two investment options: one with parameters α1 and β1, and the other with parameters α2 and
β2. The retailer’s annual costs and emissions under one option compare to those under the other in the following way:

• If β2 ≥ β1 and α2 ≤ α1, then the first investment option (i.e. the one with parameters α1 and β1) leads to no greater
annual emissions and no greater annual costs for the retailer than the second investment option does.

• If β2 ≥ β1 and α2 > α1, then

◦ If the second investment option leads to greater annual costs than the first one does, then it also results in
greater annual emissions.

◦ If the second investment option leads to annual costs lower than or equal to the first one, then it results in

lower annual emissions if
1−α2

2c2
p

β2
<

1−α1
2c2

p
β1

holds, otherwise, it results in no lower annual emissions than
the first investment option does.

4. Analytical results on the comparison of the three emission policies

In Section 3, we derived analytical solutions to the retailer’s problem of finding the replenishment quantity and the investment
amount under the three carbon regulation policies. We obtained two sets of results: one about the impact of an investment
opportunity on the annual costs and emissions (see Lemmas 1, 4 and 7), and the other about how the different emission
policies change the retailer’s annual costs and emissions in comparison to a no-policy case (see Lemmas 2, 5 and 8). Looking
into the first set of results, we arrive at the following conclusions:

• Under any of the three carbon regulation policies, total annual costs without the investment option are greater than
or equal to the total annual costs with the investment option.

• While annual carbon emissions levels with and without the investment option are equal under the cap policy, carbon
emissions level without the investment option is greater than the carbon emissions level with the investment option
under the tax policy and cap-and-trade policy.

The above results imply that having an investment option under a cap policy does not reduce the retailer’s emission level
in comparison to a case with no such option; however, it may help him/her achieve the same carbon amount with lower costs.
On the other hand, having an investment option under a tax policy or a cap-and-trade policy has a more pronounced effect
on the retailer’s annual carbon emissions and costs: the retailer can take advantage of the investment option and reduce both
his/her emissions and costs. From an environmental point of view, the above implies that an investment option along with a
tax policy or a cap-and-trade policy as an emission regulation further enhances emission reduction. Therefore, governments
should enable opportunities for companies to invest in emission reduction, particularly if a tax policy or a cap-and-trade
policy is in place.

The second set of results leads to the following conclusion:

• In comparison to the case where there is no emission regulation in place, the cap policy and the tax policy reduce
annual carbon emissions at the expense of increased annual total costs. (If the cap is not binding, annual costs and
emissions do not change under the cap policy.) On the other hand, it is possible to reduce carbon emissions with
decreased annual total costs under a cap-and-trade policy.

In the next two lemmas, we present some results following a direct comparison of the different regulation policies.

Lemma 10 For any tax policy with parameter p > 0, a better cap policy can be designed by an appropriate choice of
parameter C > 0 so that T C1(Q∗

1, G∗
1) < T C2(Q∗

2, G∗
2) and E(Q∗

1, G∗
1) ≤ E(Q∗

2, G∗
2). On the other hand, for a cap policy

with parameter C > 0, a better tax policy with parameter p > 0 cannot be found to result in T C2(Q∗
2, G∗

2) < T C1(Q∗
1, G∗

1)

and E(Q∗
2, G∗

2) ≤ E(Q∗
1, G∗

1).

Lemma 10 indicates that for any tax policy, it is possible to design a lower-cost cap policy for the retailer without increasing
his/her emissions levels. Therefore, as far as the resulting costs and emissions of the retailer are concerned, policy-makers
may prefer a cap policy over a tax policy. In the next lemma, we present the result of a similar comparison between the cap
policy and the cap-and-trade policy.

Lemma 11 Consider a cap policy with parameter C > 0, and a cap-and-trade policy with parameters C > 0 and cp > 0.
We have T C3(Q∗

3, G∗
3) ≤ T C1(Q∗

1, G∗
1) for any value of cp. Furthermore, given a value of the common parameter C, there

exists a positive value of cp such that E(Q∗
3, G∗

3) ≤ E(Q∗
1, G∗

1).
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Lemma 11 implies that corresponding to every cap policy, there exists a cap-and-trade policy with lower carbon emissions
and lower costs per unit time for the retailer if the value of the carbon trading price is right. Lemmas 10 and 11 together
imply that given a tax policy it is possible to have

T C3
(
Q∗

3, G∗
3

) ≤ T C1
(
Q∗

1, G∗
1

) ≤ T C2
(
Q∗

2, G∗
2

)
with appropriate values of C and cp.

5. Numerical analysis

In this section, we present the results of a numerical study to further investigate how the retailer’s annual costs and emissions
change with respect to the policy parameters, and how the investment option and its parameters affect the annual costs and
emissions under each policy. In addition to T Ci

(
Q∗

i , G∗
i

)
and Ei

(
Q∗

i , G∗
i

)
, we define a new measure to assess the increase

in costs relative to the decrease in emissions. We refer to this measure as cost of unit emission reduction and we define it as
follows for policy i

T Ci
(
Q∗

i , G∗
i

) − T C
(
Q0, 0

)
E
(
Q0, 0

) − E
(
Q∗

i , G∗
i

) .

It is important to note that some of our analytical results in Section 3 provide general explanations to the issues that
are brought up in this section more explicitly. Our numerical analysis complements these findings, particularly where only
limited analytical results were possible. Because the solution under the cap policy as given in Theorem 1 is more complex
than those under the tax and the cap-and-trade policies, it has been possible to obtain more analytical results involving the
latter two policies. Therefore, it is no coincidence that more of the numerical results in this section concern the cap policy.

Our analysis in Section 3 reveals that how A
h compares to Â

ĥ
is an important characteristic of the setting that affects the

solutions under all three policies. Therefore, our analysis considers two sets of instances: one with A = 100, h = 3, Â = 4
and ĥ = 3, and the other with A = 10, h = 4, Â = 100 and ĥ = 8. Here, we have A

h > Â
ĥ

in the first set of instances and
A
h < Â

ĥ
in the second set of instances. In all instances, we take D = 500, c = 6, and ĉ = 2. In what follows, we first present

our results for the cap policy, then we proceed with our findings on the tax and cap-and-trade policies.

5.1 Numerical study for cap policy

In this section, we present the results of our numerical study on cap policy with two main objectives: first, to characterise
how the annual costs, savings achieved by investment and the cost of unit emission reduction change under different values
of the policy parameter C , and secondly, to gain insights on how the retailer makes a choice between two investment options
with different parameters.

Figure 1(a) shows an illustration of how T C1(Q∗
1, G∗

1) changes with respect to varying values of C for the case of
A
h > Â

ĥ
. Figure 1(b) is a similar plot for the case of A

h < Â
ĥ

. The resulting annual cost and emission levels for some specific
instances under three scenarios (i.e. cap policy, cap policy without investment and no-policy) are also presented in Table 2.
It can be observed from Figure 1(a) and (b) that starting from the smallest possible values of C (based on Expression (6)),
T C1(Q∗

1, G∗
1) first exhibits a strictly decreasing pattern with respect to increasing values of C , and then, the costs level in

both figures. The value of C after which annual costs become constant coincides with E
(
Q0, 0

)
. If C ≥ E

(
Q0, 0

)
, then the

cap is no longer restrictive, and the solution to the retailer’s problem under no emission policy optimises his/her costs under
the cap policy as well. As a result, in both figures, T C1(Q∗

1, G∗
1) ranges from T C1

(
Qe, α

2β

)
to T C1

(
Q0, 0

)
. It can also be

observed from both figures that a one-unit decrease in the cap is more costly to the retailer at its already small values.
Table 2 reports some instances to illustrate the possible different solution types to the retailer’s problem under the

cap policy, as given in Theorem 1. In the first set of instances, characterised by A
h > Â

ĥ
, Q∗

1 = Q0 and G∗
1 = 0 for

C ≥ 1284.816. Similarly, in the second set of instances, Q∗
1 = Q0 and G∗

1 = 0 for C ≥ 2200. For those values of C
that are large enough (i.e. C ≥ 1284.816 and C ≥ 2200 in the first and second sets, respectively), having a cap policy
does not change the solution in comparison to a no-policy case because the cap amount is not restrictive. Therefore, we
have T C1

(
Q∗

1, G∗
1

) = T C1
(
Q∗

1(0), 0
) = T C

(
Q0, 0

)
in such instances. In the third instances of each set (C = 1270

and C = 2110 in the first and the second sets, respectively), we have T C
(
Q0, 0

)
< T C1

(
Q∗

1, G∗
1

) = T C1
(
Q∗

1(0), 0
)

and E
(
Q0, 0

)
> E

(
Q∗

1, G∗
1

) = E
(
Q∗

1(0), 0
)
. Here, the cap policy helps to decrease emissions at the expense of

increased costs, and the retailer does not invest in new technology to further reduce emissions even if such an option exists.
In the second instances of each set (C = 1170 and C = 1910 in the first and the second sets, respectively), we have
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Figure 1. Behaviour of T C1
(
Q∗

1, G∗
1

)
for varying values of C under a cap policy.

Table 2. Numerical illustrations under the cap policy for varying values of the cap given α = 4 and β = 0.01.

C Q1 Q2 Q∗
1(0) Q∗

1 G∗
1 E

(
Q∗

1, G∗
1

)
T C1

(
Q∗

1, G∗
1

)
E
(
Q∗

1(0), 0
)

T C1
(
Q∗

1(0), 0
)

Instances with A
h > Â

ĥ

(
Q0 = 182.574, Qe = 36.515, Qα = 164.114, E

(
Q0, 0

)
= 1284.816, T C

(
Q0, 0

)
= 3547.723

)
1070 − − − 158.904 51.994 1070 3605.005 − −
1170 100 13.333 100 162.127 22.666 1170 3574.257 1170 3650
1270 172.26 7.74 172.26 172.26 0 1270 3548.649 1270 3548.649
1370 241.137 5.529 182.574 182.574 0 1284.816 3547.723 1284.816 3547.723

Instances with A
h < Â

ĥ

(
Q0 = 50, Qe = 111.803, Qα = 76.376, E

(
Q0, 0

)
= 2200, T C

(
Q0, 0

)
= 3200

)
1710 − − − 82.556 68.043 1710 3293.72 − −
1910 134.704 92.796 92.796 77.283 11.879 1910 3231.142 1910 3239.474
2110 220.918 56.582 56.582 56.582 0 2110 3201.531 2110 3201.531
2310 283.391 44.109 50 50 0 2200 3200 2200 3200

T C
(
Q0, 0

)
< T C1

(
Q∗

1, G∗
1

)
< T C1

(
Q∗

1(0), 0
)

and E
(
Q0, 0

)
> E

(
Q∗

1, G∗
1

) = E
(
Q∗

1(0), 0
)
. Again, the cap policy

reduces annual emissions and increases annual costs, but different than the third instances, the investment option helps to
achieve the same emissions at lower costs in comparison to no investment opportunity. Finally, the first instances of each set
are illustrative of situations in which it is not possible to be within the allowed emission limits without making an investment.

In Lemma 1, we have shown that T C1
(
Q∗

1(0), 0
) − T C1

(
Q∗

1, G∗
1

) ≥ 0. The exact value of T C1
(
Q∗

1(0), 0
) −

T C1
(
Q∗

1, G∗
1

)
is a measure of the savings due to the investment opportunity under the cap policy. Figure 2 illustrates

how this difference changes with respect to C for the cases of A
h > Â

ĥ
and A

h < Â
ĥ

. In both cases, values of C for which Q∗
1(0)

exists are considered. As a result, we have C ≥ 1109.545 in Figure 2(a) and C ≥ 1894.427 in Figure 2(b). Observe also
that the savings due to the investment opportunity are more significant at tight values of the cap. Furthermore, the retailer no
longer uses the investment opportunity (i.e. G∗

1 = 0) if C is greater than or equal to E (Qα, 0).
Figure 3(a) and (b) illustrates how the cost of unit emission reduction changes for varying values of the cap in cases of

A
h > Â

ĥ
and A

h < Â
ĥ

, respectively. We know from Lemma 2 that E
(
Q∗

1, G∗
1

) ≤ E
(
Q0, 0

)
. Both figures are plotted for those

values of C at which E
(
Q∗

1, G∗
1

)
< E

(
Q0, 0

)
. Mainly, Figure 3(a) considers values of C up to 1284.816 and Figure 3(b)

considers values of C up to 2200. Observe that in both cases, reducing the annual emission level by one unit is more costly at
small values of C . Furthermore, in case of A

h > Â
ĥ

, the cost of a one-unit emission increases more rapidly as C gets smaller

in comparison to the case of A
h < Â

ĥ
.
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Figure 2. Savings due to an investment opportunity for varying values of the cap under a cap policy.

Figure 3. Cost of unit emission reduction for varying values of the cap under a cap policy.

In Lemma 3, we have shown that among two investment options with different parameters, the retailer should choose
the one with higher α and smaller β. In Figure 4, we show over numerical examples that if the investment option with
higher α does not have smaller β, whether it is a better investment option or not depends on how high the α value is.
Specifically, in Figure 4(a), for the case of A

h > Â
ĥ

, setting C = 840, α1 = 9.4, β1 = 0.02 and β2 = 0.02, we change
the value of α2 and track the difference between the minimum annual costs resulting from the two investment options.
T C1

(
Q∗

1, G∗
1|α1 = 9.4, β1 = 0.02

)
refers to the minimum costs, given that the first investment option has parameters

α1 = 9.4 and β1 = 0.02. Similarly, T C1
(
Q∗

1, G∗
1|α2, β2 = 0.025

)
denotes the minimum costs if the second investment

option has a value of α2 as given on the x-axis, and β2 = 0.025. Figure 4(a) shows that for all values of α2 < 9.656, the first
investment option has lower costs. As α2 increases beyond this value, the second investment option becomes more preferable.
Figure 4(b) illustrates a similar result for the case of A

h < Â
ĥ

, setting C = 1700, α1 = 12.3, and β1 = 0.02, β2 = 0.025. The
second investment option becomes better as α2 is increased beyond 12.445. Notice that for values of α2 between 12.3 and
12.445, the second investment option still has higher α and higher β, yet the first investment option leads to lower annual
costs.
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Figure 4. Comparison of costs under two different investment options in case of a cap policy.

Figure 5. Cost of unit emission reduction for varying values of tax under a tax policy.

5.2 Numerical study for tax policy and cap-and-trade policy

Corollary 2 and Lemma 4 provide analytical results for T C2
(
Q∗

2, G∗
2

)
and T C2

(
Q∗

2(0), 0
) − T C2

(
Q∗

2, G∗
2

)
, which imply

that both measures are increasing in p. In our numerical analysis for the tax policy, then, we proceed with investigating

the effect of policy parameter p on the cost of unit emission reduction

(
i.e.

T C2(Q∗
2,G∗

2)−T C
(
Q0,0

)
E(Q0,0)−E(Q∗

2,G∗
2)

)
. In Figure 5(a), which

pertains to the case of A
h > Â

ĥ
, the cost of unit emission reduction is strictly convex in p, with a minimum at p = 0.463.

In our numerical experimentation with various instances having A
h < Â

ĥ
, we observe that

T C2(Q∗
2,G∗

2)−T C
(
Q0,0

)
E(Q0,0)−E(Q∗

2,G∗
2)

assumes a

shape similar to the one in Figure 5(a). In Figure 5(b), for the case of A
h < Â

ĥ
, we change the value of Â to 1000 to illustrate

an extreme situation where the cost of unit emission reduction increases almost linearly with increasing p over all its possible
values.
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Figure 6. Cost of unit emission reduction for varying values of the trading price under a cap-and-trade policy.

As in the case of the tax policy, our numerical analysis for the cap-and-trade policy focuses on investigating how the cost
of unit emission reduction changes with respect to policy parameters. Corollary 4 and Lemma 8 provide analytical results
for T C3

(
Q∗

3, G∗
3

)
and T C3

(
Q∗

3(0), 0
) − T C3

(
Q∗

3, G∗
3

)
. Figure 6 presents three different illustrations of how the cost of

unit emission reduction behaves with changing values of cp. In the examples underlying Figure 6(a) and (c), there exist
values of cp (cp ≥ 0.9754 in Figure 6(a) and cp ≥ 1.148 in Figure 6(c)) at which the retailer sells his/her cap. In both of
these examples, as cp increases beyond these values, T C3

(
Q∗

3, G∗
3

)
gets smaller and smaller due to the revenue earned from

selling permits. T C3
(
Q∗

3, G∗
3

)
falls below T C

(
Q0, 0

)
when cp ≥ 4.061 and when cp ≥ 9.75 in the examples of Figure 6(a)

and (c), respectively. Figure 6(b) illustrates an example to Corollary 3. Because the retailer does not sell any carbon permits,
regardless of the value of cp, T C3

(
Q∗

3, G∗
3

)
is always greater than T C3

(
Q∗

3(0), 0
)
. Furthermore, as cp increases, the cost

of unit emission reduction increases.

5.3 Numerical comparison of the three policies

In Section 4, we proved that for any tax policy, there exists a cap policy with lower annual costs and no greater annual
emissions. Similarly, for any cap policy, there exists a cap-and-trade policy with no greater annual costs and no greater
annual emissions. In this subsection, we investigate how the differences between the annual costs and the annual emissions
of any two policies change with respect to the problem parameters.
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Figure 7. Comparison of tax policy to cap policy for annual costs and annual emissions.

In Figure 7, we present two illustrations for the comparison of the cap and tax policies in a setting with parameters
A = 100, h = 3, Â = 4, ĥ = 3, α = 4 and β = 0.01. Figure 7(a) shows a plot of how T C1

(
Q∗

1, G∗
1

) − T C2
(
Q∗

2, G∗
2

)
and

E
(
Q∗

1, G∗
1

)− E
(
Q∗

2, G∗
2

)
simultaneously change for varying values of C , given that the tax policy has p = 0.26. For values

of C lower than 758.832, the tax policy is better in terms of annual costs. As C increases beyond this value, the cap policy
becomes better in terms of annual costs and annual emissions up until C = 1227.296. For C values larger than 1227.296,
the cap policy is more advantageous because of its resulting costs, however the tax policy is better because of its resulting
emissions. Figure 7(b) presents a similar plot, given that tax policy has p = 1.26. At all values of C , the cap policy is more
advantageous for the retailer because of its resulting costs. However, the tax policy leads to lower annual emissions for the
retailer in comparison to any cap policy with parameter C ≥ 818.520. Observe from both Figure 7(a) and (b) that there is no
value of C at which the tax policy is better for both its costs and its emissions, as also implied by Lemma 10.

For the same setting underlying Figure 7, we next compare the cap policy to the cap-and-trade policy. We consider two
different values of cp for the latter: 0.26 and 1.26. Figure 8(a) shows how T C1

(
Q∗

1, G∗
1

)− T C2
(
Q∗

2, G∗
2

)
and E

(
Q∗

1, G∗
1

)−
E
(
Q∗

2, G∗
2

)
simultaneously change with varying values of C when cp = 0.26. At all values of C , the cap-and-trade policy

leads to lower annual costs, however, the cap policy results in lower annual emissions than the cap-and-trade does if
C < 1227.296. Otherwise, the cap-and-trade policy is also better in terms of annual emissions. Similarly, Figure 8(b) shows
that cap-and-trade policy is more advantageous for the retailer because of its resulting costs at all values of C ; however, the
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Figure 8. Comparison of cap policy to cap-and-trade policy for annual costs and annual emissions.

dominance of one policy over another in terms of annual emissions changes depending on the value of C . Specifically, if
C ≥ 818.520, then the cap-and-trade policy dominates in terms of both measures, otherwise, the cap policy leads to lower
annual emissions for the retailer.

6. Conclusion

In this paper, we study a retailer’s joint decisions on inventory replenishment and emission reduction investment operating
under the conditions of the classic EOQ model. We consider three emission regulation policies; cap, tax and cap-and-trade.
Our results provide guidelines and insights about five issues: (i) how much the retailer should order at each replenishment
and how much he/she should invest in emission reduction to minimise long-run average costs, (ii) what the impact of having
an investment option is on the retailer’s annual costs and emissions, (iii) how the retailer’s annual costs and emissions under
an emission regulation policy compare to those when no regulation is in place, (iv) how the retailer should choose among
different investment options available and (v) how the different regulation policies compare in terms of the retailer’s annual
emissions and costs.

Analytical expressions for the optimal replenishment quantity and investment amount for the cap policy, tax policy and
cap-and-trade policy are presented in Theorems 1–3, respectively. Our findings imply that an investment option may help
the retailer to reduce his/her costs significantly under all policies; however, the retailer’s annual emissions level does not
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decrease due to investing in case of the cap policy. Under the tax policy and the cap-and-trade policy, the retailer always takes
advantage of the investment opportunity to further reduce his/her emissions, which implies that there is better motivation for
governments to make investment opportunities available under the tax or cap-and-trade policy. We have not modelled the
possibility that the company invents his/her own environmental technologies, but these results also suggest that it is more
likely that a company involves in technological innovation in case of tax or cap-and-trade policies rather than in a cap policy.

When carefully designed, all three regulation policies are effective in reducing carbon emissions. The cap and tax policies
always lead to higher annual costs for the retailer compared to when no regulation policy is in place. On the other hand, under
a cap-and-trade policy, the retailer may reduce his/her costs by selling permits equivalent to his/her excess carbon capacity.
For the retailer not to profit solely from selling permits, there must exist an upper bound on the maximum annual carbon
emission (see Corollary 5).

The investment function considered in this study has a nonlinear form characterised by two parameters. Lemmas 3, 6
and 9 provide guidelines in terms of those parameters on how the retailer should choose among different investment options.
Our results imply that in case of the cap policy, the right choice of investment opportunity may help the retailer further
reduce his/her annual costs, but it does not have an impact on annual emissions. We show that a better investment opportunity
for reducing costs may lead to more annual emissions in some cases under a tax policy or a cap-and-trade policy. We also
characterise the cases in which it is possible to reduce both the annual costs and the annual emissions by the right choice of
investment opportunity.

We also show that for a given cap or cap-and-trade policy, it is not possible to design a tax policy that leads to both lower
costs and lower emissions. On the other hand, for a given tax policy, a better cap policy can be designed by the appropriate
choice of cap value. Further, for a given cap policy, there may exist a cap-and-trade policy that is better for both the resulting
costs and the resulting emissions.

In our numerical analysis, we have defined a measure that we refer to as ‘cost of unit emission reduction’. This measure is
the ratio of the cost increase to the savings in emissions, and its value for a certain policy can be considered as the social cost
of that policy. We have observed that the social cost becomes very high as the policy parameters are tightened in case of cap
and tax policies (i.e. annual carbon emission cap is decreased in cap policy, or tax paid for one unit emission in increased in
tax policy). In fact, the increase in social cost is more emphasised when the company’s ratio of fixed cost of replenishment to
his/her inventory holding cost rate is very high (i.e. A

h > Â
ĥ

in terms of problem parameters). This suggests, in an inventory
setting under a cap or a tax policy, reducing the company’s ordering costs along with green technologies may decrease the
social cost. However, we believe further research is needed to explore what kind of production/inventory related parameters
are of significance in reducing cost of compliance to emission regulations. Our numerical analysis (see Figure 6) shows that
a cap-and-trade policy, considering the measure of cost of unit emission reduction, may sometimes be rewarding (other times
costly) depending on whether the company is able to generate excess carbon allowance to sell or not.

The use of a quadratic emission reduction function has made it possible to obtain analytical results that lead to the
implications as discussed above. An important characteristic of this function, which we have utilised extensively in our
analysis, is that it is a concave, increasing function until a certain value of investment (i.e. α/(2β)). The increasing behaviour
of the function upto a certain point shows that investment in green technology is efficient in reducing emissions, but there
is a maximum potential of abatement. The concavity implies that it becomes more costly to reduce emissions as emissions
are decreased (the low hanging fruit has been picked). The analytical expressions we have derived, naturally depend on the
parameters of this function, however, we believe our general conclusions still hold in case of other investment functions
which exhibit these characteristics.

Our model assumes a single item. An immediate extension would be to study the joint decisions for replenishment and
allocation of limited investment budget (for emission reduction) among multiple items to maximise the profits. Our study also
considers a retailer operating under the conditions of the EOQ model, which is one of the fundamental models of inventory
theory. As we have mentioned in the introduction, there is a new paradigm in inventory theory (i.e. inventory planning to help
the environment) that revisits classical models to take into account issues related to energy, environment, waste disposal, etc.
(e.g. Hasanov et al. 2013; Jaber 2009; Sarkis, Zhu, and Lai 2011 ). The questions raised in this paper can also be investigated
for settings with different inventory replenishment policies.
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Appendix 1.

A.1 Proof of Theorem 1
The proof will follow by making use of the Karush–Kuhn–Tucker (KKT) conditions. The objective function is differentiable, and it is

convex because its Hessian matrix

( 2AD
Q3 0

0 0

)
is positive semi-definite. Emission cap constraint is also differentiable, and it is strictly

convex in Q and G because its Hessian matrix

( 2 ÂD
Q3 0

0 2β

)
is positive definite. In addition, Assumption (A4) implies that there exists

a feasible point in the set

{
ÂD
Q + ĥQ

2 + ĉD − αG + βG2 < C, Q ≥ 0, G ≥ 0

}
. As a result, we conclude that the KKT conditions listed
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below guarantee global optimality along with feasibility conditions.

−AD

Q2
+ h

2
+ λ1

(
− ÂD

Q2
+ ĥ

2

)
− μ1 = 0, (14)

1 + λ1(−α + 2βG) − μ2 = 0, (15)

λ1

(
C − ÂD

Q
− ĥQ

2
− ĉD + αG − βG2

)
= 0, (16)

μ1 Q = 0, (17)

μ2G = 0, (18)

λ1 ≥ 0, μ1 ≥ 0, μ2 ≥ 0. (19)

The multipliers λ1, μ1, and μ2 may be equal to zero or be greater than zero. Considering these alternatives, there are eight possible
cases, however, only the following three may lead to feasible solutions.

Case 1 λ1 = 0, μ1 = 0, μ2 > 0
Expressions (16) and (17) are satisfied because λ1 = 0 and μ1 = 0. Expression (15) implies μ2 = 1. Because μ2 > 0, Expression (18)

leads to G = 0. Finally, evaluating Expression (14) at λ1 = 0 and μ1 = 0, we obtain Q = Q0 =
√

2AD
h .

Now, let us check the feasibility of Q =
√

2AD
h and G = 0. When G = 0, to find a feasible order quantity, we should have

C ≥
√

2 ÂDĥ + ĉD, because the contrary implies that even the minimum carbon emission possible by ordering decisions would exceed the

emission cap. In addition, any feasible order quantity Q should satisfy ÂD
Q + ĥQ

2 + ĉD ≤ C . This inequality further yields Q2 ≤ Q ≤ Q1,

where Q1 and Q2 are defined in (7) and (8). Observe that since C ≥
√

2 ÂDĥ+ ĉD, both Q1 and Q2 exist. Therefore, if C ≥
√

2 ÂDĥ+ ĉD
and Q2 ≤ Q0 ≤ Q1, then Q∗

1 = Q0 and G∗
1 = 0.

Case 2 λ1 > 0, μ1 = 0, μ2 > 0
Using the fact that μ1 = 0, Expression (14) can be rewritten as

− AD

Q2
+ h

2
+ λ1

(
− ÂD

Q2
+ ĥ

2

)
= 0. (20)

Since μ2 > 0, Expression (18) implies G = 0. Therefore, Expression (15) reduces to

1 − αλ1 − μ2 = 0. (21)

Because λ1 > 0 and G = 0, Expression (16) implies

C − ÂD

Q
− ĥQ

2
− ĉD = 0.

Note that, Q1 and Q2 are the two values of Q that satisfy the above equality. Since G = 0, we should have C ≥
√

2 ÂDĥ + ĉD for the
same reason as discussed in Case 1, which in turn, implies that Q1 and Q2 exist. In the rest of our analysis for Case 2, we will consider
the following two possibilities:

Case 2.1 C =
√

2 ÂDĥ + ĉD

It can be shown that if C =
√

2 ÂDĥ + ĉD, then Q1 = Q2 =
√

2 ÂD
ĥ

. In this case, Expression (20) holds for any positive value of λ1 as

long as A
h = Â

ĥ
. However, due to the relationship between λ1 and μ2 as stated in Expression (21) and the fact that μ2 > 0, λ1 should be

chosen such that λ1 < 1
α . Therefore, if A

h = Â
ĥ

, then Q∗
1 = Q0 and G∗

1 = 0.

Case 2.2 C >
√

2 ÂDĥ + ĉD
If C >

√
2 ÂDĥ + ĉD, then Q1 �= Q2. For Q = Q1 or Q = Q2 to be optimal, there must exist positive values of λ1 and μ2 that satisfy

Expressions (20) and (21). Using Expression (20), we obtain

λ1 =
AD
Q2 − h

2

− ÂD
Q2 + ĥ

2

= 2AD − hQ2

−2 ÂD + ĥQ2
.
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Note that, since C >
√

2 ÂDĥ + ĉD, it turns out that the denominator of the above expression is different than zero for Q = Q1 and
Q = Q2, therefore, λ1 is finite. Utilising this expression in (21) further leads to

μ2 = 1 − α
2AD − hQ2

−2 ÂD + ĥQ2
.

Since λ1 > 0 and μ2 > 0, any optimal Q should then satisfy

0 <
2AD − hQ2

−2 ÂD + ĥQ2
<

1

α
. (22)

Now, let us check the conditions for Q1 to satisfy the above expression, and hence, to be optimal. Since C >
√

2 ÂDĥ + ĉD, we have

2(C − ĉD)2 − 4 ÂDĥ > 0.

Combining C >
√

2 ÂDĥ + ĉD with the fact that
√

2 ÂDĥ > 0, we conclude

2(C − ĉD)2 + 2(C − ĉD)

√
(C − ĉD)2 − 2 ÂDĥ − 4 ÂDĥ > 0,

which can be rewritten as [
C − ĉD +

√
(C − ĉD)2 − 2 ÂDĥ

]2
− 2 ÂDĥ > 0.

The above inequality implies

−2 ÂD + ĥ

[
C − ĉD +

√
(C − ĉD)2 − 2 ÂDĥ

]2

ĥ2
> 0.

Observe from Expression (7) that, the fractional term in the above expression is equal to Q2
1, therefore, we have

−2 ÂD + ĥQ2
1 > 0.

Based on the above result, for Expression (22) to hold for Q = Q1, we should have 2AD − hQ2
1 > 0 and

2AD−hQ2
1

−2 ÂD+ĥQ2
1

< 1
α . Evaluating

these two expressions, we conclude that if Q1 < Q0 =
√

2AD
h and Q1 > Qα =

√
2( Â+Aα)D

ĥ+hα
, then Q∗

1 = Q1 and G∗
1 = 0.

To check the conditions for optimality of Q2, we use a similar methodology. Since C >
√

2 ÂDĥ + ĉD, we have(
(C − ĉD)2 − 2 ÂDĥ

)2
< (C − ĉD)2

(
(C − ĉD)2 − 2 ÂDĥ

)
,

which, in turn, implies that

(C − ĉD)2 − 2 ÂDĥ − (C − ĉD)

√
(C − ĉD)2 − 2 ÂDĥ < 0.

Multiplying both sides of the above expression with 2
ĥ

leads to

−2 ÂD + ĥ

[
(C − ĉD) −

√
(C − ĉD)2 − 2 ÂDĥ

]2

ĥ2
< 0.

Observe from Expression (8) that, the fractional term in the above expression is equal to Q2
2, therefore, we have

−2 ÂD + ĥQ2
2 < 0.

Based on the above result, for Expression (22) to hold for Q = Q2, we should have 2AD − hQ2
2 < 0 and

2AD−hQ2
2

−2 ÂD+ĥQ2
2

< 1
α . Evaluating

these two expressions, we conclude that if Q2 > Q0 =
√

2AD
h and Q2 < Qα =

√
2( Â+Aα)D

ĥ+hα
, then Q∗

1 = Q2 and G∗
1 = 0.

Case 3 λ1 > 0, μ1 = 0, μ2 = 0
Expression (17) and Expression (18) are satisfied because μ1 = 0 and μ2 = 0. Using the fact that μ1 = 0, Expression (14) can be
rewritten as

−AD

Q2
+ h

2
+ λ1

(
− ÂD

Q2
+ ĥ

2

)
= 0. (23)

Since μ2 = 0, Expression (17) reduces to
1 + λ1(−α + 2βG) = 0. (24)
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As λ1 > 0, Expression(16) implies
ÂD

Q
+ ĥQ

2
+ ĉD − C − αG + βG2 = 0. (25)

Now, we should find non-negative values of Q and G, and a positive value of λ1 that solve the system of equations as given by (23), (24)
and (25). It follows from Expression (24) that G < α

2β
. For any value of G, Expression (25) is satisfied at the following two values of Q,

which we refer to as Q3(G) and Q4(G):

Q3(G) = (C − ĉD + αG − βG2) +
√

(C − ĉD + αG − βG2)2 − 2 Âĥ D

ĥ
, (26)

Q4(G) = (C − ĉD + αG − βG2) −
√

(C − ĉD + αG − βG2)2 − 2 Âĥ D

ĥ
, (27)

For the existence of such Q3(G) and Q4(G), we should have C − ĉD + αG − βG2 ≥
√

2 Âĥ D. In the rest of our analysis for Case 3,
we will consider the following two possibilities:

Case 3.1 C − ĉD + αG − βG2 =
√

2 ÂDĥ

In this case, Q3(G) = Q4(G) = Qe =
√

2 ÂD
ĥ

. When Q = Qe, Expression (23) holds for any λ1 > 0 as long as Â
ĥ

= A
h . Now, for any

value of G that satisfies C−ĉD+αG−βG2 =
√

2 ÂDĥ to be optimal, we should have 0 ≤ G < α
2β

.Although there are two real roots of this

equation, these conditions only hold at G = G5 =
α−

√
α2−4β

(
−C+ĉD+

√
2 ÂDĥ

)
2β

. Therefore, if
√

2 Âĥ D+ĉD− α2

4β
< C <

√
2 Âĥ D+ĉD

and Â
ĥ

= A
h , then Q∗

1 = Qe and G∗
1 = G5.

Case 3.2 C − ĉD + αG − βG2 >
√

2 ÂDĥ
If C − ĉD + αG − βG2 >

√
2 ÂDĥ, then Q3(G) �= Q4(G). For any (Q3(G), G) or (Q4(G), G) pair to be optimal, there must exist

corresponding positive values of λ1 that satisfy Expression (20). That is, we should have λ1 = 2AD−hQ2

−2 ÂD+ĥQ2
> 0. Now, let us check

the conditions for Q3(G) to satisfy this inequality. It can be shown that −2 ÂD + ĥQ2
3(G) > 0, or equivalently Q3(G) > Qe, for

any given value of G that satisfies C − ĉD + αG − βG2 >
√

2 ÂDĥ. Combining the condition of having λ1 > 0 with the fact that
−2 ÂD + ĥQ2

3(G) > 0, we conclude 2AD − hQ2
3(G) > 0. This implies Q3(G) < Q0.

Next, utilising λ1 = 2AD−hQ2

−2 ÂD+ĥQ2
in Expression (24), we obtain

G = 2(αA + Â)D − (αh + ĥ)Q2
3(G)

2β(2AD − hQ2
3(G))

. (28)

At this point, the above expression with Expression (26) lead to a unique pair of (Q, G), which we refer to as (Q3, G3). The condition

that G ≥ 0, jointly with 2AD − hQ2
3 > 0, implies that 2(αA + Â)D − (αh + ĥ)Q2

3 ≥ 0. This, in turn, leads to Q3 ≤ Qα =
√

2D(αA+ Â)

αh+ĥ
.

We have shown that the optimality of Q3 is due to the following conditions: Q3 > Qe, Q3 < Q0 and Q3 ≤ Qα . Note that Q3 > Qe

and Q3 < Q0 simultaneously hold only if A
h > Â

ĥ
. Having A

h > Â
ĥ

further implies that Qα < Q0. Therefore, we conclude that if√
2 Âĥ D + ĉD − α2

4β
< C <

√
2 Âĥ D + ĉD and Qe < Q3 ≤ Qα , then Q∗

1 = Q3 and G∗
1 = G3.

With a similar approach, it can be shown that (Q4, G4) obtained by solving Expression (27) and G = 2(αA+ Â)D−(αh+ĥ)Q2
4(G)

2β(2AD−hQ2
4(G))

simultaneously, is optimal if
√

2 Âĥ D + ĉD − α2

4β
< C <

√
2 Âĥ D + ĉD and Qα ≤ Q4 < Qe. �

A.2 Proof of Lemma 2
It follows from the expressions for T C(Q, G) and T C1(Q, G), and the definition of Q0, that T C(Q0, 0) ≤ T C1(Q∗

1, 0). Furthermore,
we have T C1(Q∗

1, 0) ≤ T C1(Q∗
1, G∗

1); thus, T C1(Q∗
1, G∗

1) ≥ T C(Q0, 0). The result about the annual emission levels follows from

Corollary 1 and the fact that E
(

Q0, 0
)

=
√

D( Âh+ĥ A)√
2Ah

+ ĉD. �

A.3 Proof of Lemma 3
Let (Q̄2, Ḡ2) be the retailer’s optimal solution if the second investment option (i.e. the one with parameters α2 and β2) is adopted. First,
we will show that there exists a feasible solution under the first investment option, say

(
Q̄1, Ḡ1

)
, that leads to the same annual emissions
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level as that of
(
Q̄2, Ḡ2

)
under the second investment option. Second, we will show that the annual costs at

(
Q̄1, Ḡ1

)
, when the first

investment option is adopted, are lower than or equal to the annual costs at
(
Q̄2, Ḡ2

)
under the second investment option.

Let us set Q̄1 = Q̄2. The two conditions for
(
Q̄1, Ḡ1

)
along with the first investment option to lead to the same annual emissions

level as that of
(
Q̄2, Ḡ2

)
under the second investment option are:

α1Ḡ1 − β1
(
Ḡ1

)2 = α2Ḡ2 − β2
(
Ḡ2

)2 (29)

and
Ḡ1 ≤ α1

2β1
. (30)

We will show that there exists a unique solution to Expression (29) that also satisfies Expression (30).
The two values of Ḡ1 that satisfy Expression (29) are:

α1 +
√

(α1)2 − 4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2
)

2β1
, (31)

and

α1 −
√

(α1)2 − 4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2
)

2β1
. (32)

Note that (α2)
2

4β2
is the maximum of the annual emission reduction under the second investment option. Therefore, α2Ḡ2−β2

(
Ḡ2

)2 ≤ (α2)
2

4β2
.

Since α1 ≥ α2 and β1 ≤ β2, we have (α2)
2

4β2
≤ (α1)

2

4β1
. This in turn implies that (α1)

2

4β1
≥ α2Ḡ2 − β2

(
Ḡ2

)2, and hence, (α1)2 ≥
4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2
)

. Therefore, Expression (31) and Expression (32) lead to positive values. However, value of Ḡ1 provided by

Expression (32) leads to lower annual costs, therefore, we set Ḡ1 =
α1−

√
(α1)

2−4β1

(
α2Ḡ2−β2

(
Ḡ2

)2
)

2β1
, which also satisfies Expression (30).

We show above the feasibility of
(
Q̄1, Ḡ1

)
for the retailer’s problem if the first investment option is adopted. Note that in this solution,

Q̄1 = Q̄2 and Ḡ1 =
α1−

√
(α1)

2−4β1

(
α2Ḡ2−β2

(
Ḡ2

)2
)

2β1
. Now, assume that

(
Q̄1, Ḡ1

)
leads to greater annual costs. Then, due to the objective

function under the cap policy, it must be that G2 < G1. Since α1G −β1G2 is strictly increasing over those values of G such that G ≤ α1
2β1

,
it follows that

α1Ḡ1 − β1
(
Ḡ1

)2
> α1Ḡ2 − β1

(
Ḡ2

)2
.

As α2 ≤ α1 and β2 ≥ β1, we have
α1Ḡ2 − β1

(
Ḡ2

)2 ≥ α2Ḡ2 − β2
(
Ḡ2

)2
.

The above two inequalities jointly imply that α1Ḡ1 − β1
(
Ḡ1

)2
> α2Ḡ2 − β2

(
Ḡ2

)2, which contradicts with Expression (29). Therefore,
in contrary to our assumption, we must have G2 ≥ G1. This implies the annual costs of

(
Q̄1, Ḡ1

)
along with the first investment option

are lower than or equal to the optimum costs under the second investment option.

A.4 Proof of Theorem 2

Plugging ÂD
Q + ĥQ

2 + ĉD − αG + βG2 in place of E(Q, G) in the objective function, it turns out be

(A + p Â)D

Q
+ (h + ĥ p)Q

2
+ (c + ĉ p)D + G − αpG + pβG2.

The Hessian matrix corresponding to the above function is

( 2D(A+ Â p)

Q3 0

0 2pβ

)
,

with a determinant 4(A+p Â)Dpβ
Q3 , which is greater than zero. Combined with the fact that 2D(A+ Â p)

Q3 > 0, this result implies the objective

function is jointly and strictly convex in Q and G, and hence, Q∗
2 and G∗

2 should satisfy the following system of equations:

∂T C2

∂ Q
(Q∗

2, G∗
2) = − (A + p Â)D

(Q∗
2)2

+ (h + pĥ)

2
= 0,

∂T C2

∂G
(Q∗

2, G∗
2) = 1 − αp + 2pβG∗

2 = 0.

Solving for Q∗
2 and G∗

2 in the above two expressions leads to the result in the theorem. �
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A.5 Proof of Lemma 4
Under a tax policy, if there is no investment opportunity to reduce carbon emissions, the retailer minimises the following function to find
Q:

T C2(Q, 0) = (A + p Â)D

Q
+ (h + pĥ)Q

2
+ (c + pĉ)D.

T C2(Q, 0) is minimised at Q∗
2(0) =

√
2(A+p Â)D

(h+pĥ)
. In turn, the retailer’s annual costs at Q∗

2(0) are

T C2(Q∗
2(0), 0) =

√
2(A + p Â)(h + pĥ)D + (c + pĉ)D,

and his/her annual carbon emissions are

E(Q∗
2(0), 0) =

√
D[ Â(h + pĥ) + ĥ(A + p Â)]√

2(A + p Â)(h + pĥ)

+ ĉD.

Expressions (10) and (11) are then utilised to compute the differences E(Q∗
2(0), 0)− E(Q∗

2, G∗
2) and T C2(Q∗

2(0), 0)− T C2(Q∗
2, G∗

2).�

A.6 Proof of Lemma 5
By definitions of T C (Q, G) and T C2 (Q, G), we know that T C (Q, G) ≤ T C2 (Q, G) as E (Q, G) ≥ 0. It then follows that
T C

(
Q∗

2, G∗
2

)
< T C2

(
Q∗

2, G∗
2

)
because E

(
Q∗

2, G∗
2

)
> 0, as noted in Corollary 2. Furthermore, we have T C

(
Q0, 0

)
< T C

(
Q∗

2, G∗
2

)
because

(
Q0, 0

)
minimises T C(Q, G). Combining this with the fact that T C

(
Q∗

2, G∗
2

)
< T C2

(
Q∗

2, G∗
2

)
leads to T C2

(
Q∗

2, G∗
2

)
>

T C
(

Q0, 0
)

.

Now, let us prove the second part of the lemma. We have from Theorem 2 and Assumption (A2) that E
(
Q∗

2, G∗
2

)
< E

(
Q∗

2, 0
)
. The

remaining part of the proof will follow by showing that E
(
Q∗

2, 0
)

< E
(

Q0, 0
)

in case A
h �= Â

ĥ
, and that E

(
Q∗

2, 0
) = E

(
Q0, 0

)
, in

case A
h = Â

ĥ
. Therefore, we will conclude that E

(
Q∗

2, G∗
2

)
< E

(
Q0, 0

)
in all cases.

If A
h = Â

ĥ
, we have Q∗

2 = Q0, which implies E
(
Q∗

2, 0
) = E

(
Q0, 0

)
. We will analyse the case of A

h �= Â
ĥ

in two parts. First,

suppose that A
h > Â

ĥ
. In this case, we have Qe < Q∗

2 < Q0. This further leads to E
(
Q∗

2, 0
)

< E
(

Q0, 0
)

due to the strict convexity of

E(Q, 0) and the fact that Qe is the unique minimiser of E(Q, 0). Now, suppose that A
h < Â

ĥ
. In this case, we have Qe > Q∗

2 > Q0. It

again follows from the strict convexity of E(Q, 0) and the definition of Qe that we have E(Q∗
2, 0) < E(Q0, 0). �

A.7 Proof of Lemma 6
We will prove the different parts of the lemma in the following two cases.

Case 1 β2 ≥ β1, α2 ≤ α1
It follows from β2 ≥ β1 that we have α2 p−1√

β2
≤ α2 p−1√

β1
. Also, the fact that α2 ≤ α1 leads to α2 p−1√

β1
≤ α1 p−1√

β1
. Combining these two

results, we have α2 p−1√
β2

≤ α1 p−1√
β1

, and hence (α2 p−1)2

4pβ2
≤ (α1 p−1)2

4pβ1
. Expression (11) and the fact that (α2 p−1)2

4pβ2
≤ (α1 p−1)2

4pβ1
jointly imply

that the annual costs under the first investment option is lower than or equal to the annual costs under the second investment option.
Now, let us compare the annual emissions under the two investment options. It follows from α2 p−1√

β2
≤ α1 p−1√

β1
that α1 p

√
β2 −√

β2 ≥
α2 p

√
β1 − √

β1. Because β2 ≥ β1, we have 2
√

β2 ≥ 2
√

β1. Combining this with α1 p
√

β2 − √
β2 ≥ α2 p

√
β1 − √

β1 leads to
α1 p

√
β2 + √

β2 ≥ α2 p
√

β1 + √
β1, which in turn implies α1 p+1√

β1
≥ α2 p+1√

β2
. Since α1 p−1√

β1
≥ α2 p−1√

β2
and α1 p+1√

β1
≥ α2 p+1√

β2
, it follows

that
α2

1 p2−1
β1

≥ α2
2 p2−1
β2

, or equivalently,
1−α2

1 p2

β1
≤ 1−α2

2 p2

β2
. This implies, due to Expression (10), that annual emissions under the first

investment option are lower than or equal to annual emissions under the second investment option.

Case 2 β2 ≥ β1, α2 > α1

If the second investment option leads to greater annual costs than the first one does, then Expression (11) implies that (α2 p−1)2

4pβ2
<

(α1 p−1)2

4pβ1
,

or equivalently, that α2 p
√

β1 −√
β1 < α1 p

√
β2 −√

β2. Now, in contrary to the lemma, assume that the annual emissions level resulting
from the second investment option is lower than or equal to that of the first investment option. In mathematical terms, assume that
1−α2

2 p2

4p2β2
≤ 1−α2

1 p2

4p2β1
, which is equivalent to

α2 p − 1√
β2

× α2 p + 1√
β2

≥ α1 p − 1√
β1

× α1 p + 1√
β1

.
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Due to (α2 p−1)2

4pβ2
<

(α1 p−1)2

4pβ1
, we have α2 p−1√

β2
<

α1 p−1√
β1

. Therefore, in order for the above inequality to hold, we should have α2 p+1√
β2

>

α1 p+1√
β1

, or equivalently, α2 p
√

β1 + √
β1 > α1 p

√
β2 + √

β2. Since β2 ≥ β1, this implies α2 p
√

β1 − √
β1 > α1 p

√
β2 − √

β2, which

contradicts α2 p
√

β1 −√
β1 < α1 p

√
β2 −√

β2. Therefore, if the second investment option leads to greater annual costs than the first one,
it must be that the annual emissions level resulting from the second investment is greater than that of the first investment.

If the second investment option leads to lower than or equal annual costs than the first one, the annual emission levels of the two

investment options depend on the second term of Expression (10). If
1−α2

2 p2

4p2β2
<

1−α2
1 p2

4p2β1
, or equivalently,

1−α2
2 p2

β2
<

1−α2
1 p2

β1
, holds, then

the second investment option is better in terms of the retailer’s annual emissions; otherwise, the annual emissions level is greater than or
equal to that of the first investment option. �

A.8 Proof of Theorem 3

Plugging C − ÂD
Q − ĥQ

2 − ĉD + αG − βG2 in place of X , the objective function turns out be

(A + cp Â)D

Q
+ (h + ĥcp)Q

2
+ cpβG2 + (1 − αcp)G + (c + ĉcp)D − cpC.

Following similar steps to those in the proof of Theorem 2 for checking the structural properties of T C2(Q, G), it can be shown that
T C3(Q, G) is also jointly and strictly convex in Q and G, and hence, Q∗

3 and G∗
3 should satisfy the following system of equations:

∂T C3

∂ Q
(Q∗

3, G∗
3) = − (A + cp Â)D

(Q∗
3)2

+ (h + ĥcp)

2
= 0,

∂T C3

∂G
(Q∗

3, G∗
3) = 1 − αcp + 2cpβG∗

3 = 0.

Solving for Q∗
3 and G∗

3 in the above two expressions leads to the result in the theorem. �

A.9 Proof of Lemma 7
Under a cap-and-trade policy, if there is no investment opportunity to reduce carbon emissions, the retailer minimises the following function
to find Q:

T C3(Q, 0) = (A + cp Â)D

Q
+ (h + cpĥ)Q

2
+ (c + cpĉ)D.

T C3(Q, 0) is minimised at Q∗
3(0) =

√
2(A+cp Â)D

(h+cpĥ)
. In turn, the retailer’s annual costs at Q∗

3(0) are

T C3(Q∗
3(0), 0) =

√
2(A + cp Â)(h + cpĥ)D + (c + cpĉ)D,

and his/her annual carbon emissions are

E(Q∗
3(0), 0) =

√
D[ Â(h + cpĥ) + ĥ(A + cp Â)]√

2(A + cp Â)(h + cpĥ)

+ ĉD.

Expressions (12) and (13) are then utilised to compute the differences E(Q∗
3(0), 0)− E(Q∗

3, G∗
3) and T C3(Q∗

3(0), 0)− T C3(Q∗
3, G∗

3).�

A.10 Proof of Lemma 8
The first part of the lemma follows from a similar discussion to the proof of Lemma 5 and Assumption A(3). The second part follows from
comparing Equation (13) to T C(Q0, 0). �

A.11 Proof of Lemma 10
Consider a tax policy with parameter p > 0. Let C = E(Q∗

2, G∗
2). Note that C > 0 because E(Q∗

2, G∗
2) > 0. It follows from the expressions

for T C1(Q, G) and T C2(Q, G), and the fact that E(Q∗
2, G∗

2) > 0 and p > 0, that we have T C1(Q∗
2, G∗

2) < T C2(Q∗
2, G∗

2). Furthermore,
as C = E(Q∗

2, G∗
2), the optimal solution of the tax policy (i.e. (Q∗

2, G∗
2)), is also a feasible solution for the newly designed cap policy.

Let (Q∗
1, G∗

1) be the retailer’s optimal solution under the cap policy. It follows from this definition that T C1(Q∗
1, G∗

1) ≤ T C1(Q∗
2, G∗

2).
Combining this with T C1(Q∗

2, G∗
2) < T C2(Q∗

2, G∗
2) leads to T C1(Q∗

1, G∗
1) < T C2(Q∗

2, G∗
2).Also, note that E(Q∗

1, G∗
1) ≤ C , therefore,

E(Q∗
1, G∗

1) ≤ E(Q∗
2, G∗

2). �
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For the second part of the proof, consider a cap policy with parameter C > 0. Suppose that a tax policy with parameter p > 0
can be found so that T C2(Q∗

2, G∗
2) < T C1(Q∗

1, G∗
1) and E(Q∗

2, G∗
2) ≤ E(Q∗

1, G∗
1). By definition of (Q∗

1, G∗
1), E(Q∗

1, G∗
1) ≤ C ,

thus E(Q∗
2, G∗

2) ≤ C as well. This implies that (Q∗
2, G∗

2) is a feasible solution to the retailer’s problem under the cap policy. Because
(Q∗

1, G∗
1) is the optimal solution under the cap policy, it must be that T C1(Q∗

1, G∗
1) ≤ T C2(Q∗

2, G∗
2). This contradicts T C2(Q∗

2, G∗
2) <

T C1(Q∗
1, G∗

1); therefore, a tax policy with the assumed characteristics cannot be found. �

A.12 Proof of Lemma 11
By definition of (Q∗

1, G∗
1), we know that E(Q∗

1, G∗
1) ≤ C . Since X = C −E(Q∗

1, G∗
1) ≥ 0, it follows from the expressions for T C1(Q, G)

and T C3(Q, G) that T C3(Q∗
1, G∗

1) ≤ T C1(Q∗
1, G∗

1) for cp > 0. Combining this with the fact that T C3(Q∗
3, G∗

3) ≤ T C3(Q∗
1, G∗

1), we
have T C3(Q∗

3, G∗
3) ≤ T C1(Q∗

1, G∗
1).

For the second part of the proof, let us consider Expression (2). This expression, independent of the emission regulation type, assumes
a minimum value of

√
2 Âĥ D + ĉD − α2

4β
when Q = Qe units are ordered and G = α

2β
monetary units are invested. Therefore,

E(Q∗
1, G∗

1) ≥
√

2 Âĥ D + ĉD − α2

4β
. Furthermore, at very large values of cp , (Q∗

3, G∗
3) approaches

(
Qe, α

2β

)
and E(Q∗

3, G∗
3) approaches√

2 Âĥ D + ĉD − α2

4β
. Therefore, a large enough value of cp can be chosen such that E(Q∗

1, G∗
1) ≥ E(Q∗

3, G∗
3). �
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