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A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO

(GNIZ) is demonstrated. The memory shows a large threshold voltage Vt shift (4 V) at low operating

voltage (6/�6 V), good retention (>10 yr), and good endurance characteristic (>104 cycles). This

memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a

thicker tunnel oxide. These structures showed a reduced Vt shift and retention characteristic. The

GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the

memory window and retention of data. The larger Vt shift indicates that the ZnO adds available trap

states and enhances the emission and retention of charges. The charge emission mechanism in the

memory structures with graphene nanoplatelets at an electric field E� 5.57 MV/cm is found to be

based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with

current semiconductor processing, therefore, has great potential in low-cost nano-memory

applications. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891050]

In the past decade, memory chips with low-cost, low-

power consumption, and high density have gained tremendous

attention due to the growing market of consumer electronic

equipment such as smartphone, tablet, mobile internet devi-

ces, and digital cameras.1,2 However, current nonvolatile flash

memory devices are facing major challenges to maintain their

good reliability and retention with the continuous increase in

density and scaling of the gate length. Therefore, it is impera-

tive to find novel structures and materials to be incorporated

in the memory cells which would allow tunnel oxide and volt-

age scaling.

Recently, two-dimensional graphene and its derived

nanomaterials have attracted great efforts and research due

to their exceptional characteristics such as high carrier

mobility, large work-function, thermal conductivity, struc-

tural robustness, and optical transparency.3,4 Based on these

unique electronic properties, graphene appears to be a prom-

ising material in nonvolatile memory devices. Graphene

flash memory with large memory window and low voltage

has been demonstrated, where graphene sheets were used as

the floating gate of the memory.5 However, this type of

memory is less efficient and has a single point of failure

because if a defect exists in the tunnel oxide, then all the

stored charge in the floating gate would leak out. In this

paper, we demonstrate the use of graphene nanoplatelets

embedded in a ZnO layer (GNIZ) as the charge storage media

in charge trapping memory devices. The performance of this

device is compared to the control devices with only ZnO or

graphene nanoplatelets (GN) charge storage layer with a

thicker tunnel oxide in order to show the effect of GNIZ on

the retention and endurance characteristics of the memory.

The MOS memory cells are fabricated on an nþ-type

(111) (Antimony doped, 15–20 mX-cm) Si wafer. First,

3.6-nm-thick tunnel oxide Al2O3 followed by 2-nm-thick

ZnO are deposited at 250 �C using Cambridge Nanotech

Savannah-100 atomic layer deposition (ALD) system.

Pristine graphene nanoplatelets (NanoIntegris PureSheets

Quattro grade) are deposited by drop-casting technique.

Samples are placed on hot-plate at 110 �C and 2–2.5 ml of

0.05 mg/ml graphene solution is drop-casted slowly by using

plastic pipette and samples are left to dry for 5 min on hot-

plate. Then a 2-nm-thick ZnO followed by a 15-nm-thick

Al2O3 blocking oxide are ALD deposited at 250 �C. Finally,

a 400-nm-thick Al layer with a diameter of 1 mm is sputtered

using a shadow mask for the gate contact. A cross-sectional

illustration of the fabricated memory device structure is

depicted in Figure 1(a). The control structure with only GN

(or only 4-nm ZnO) is fabricated the same way but with a

5-nm-thick tunnel oxide. Moreover, it should be noted that

although the fabricated memory devices have 1-mm diame-

ter, according to the ITRS roadmap the structure of such

MOS memory device is expected to be scalable without

degradation of performance.1

The charging effect in the fabricated memory cells is

analyzed by studying the high frequency (1 MHz) C-Vgate

curves of the programmed and erased states. Using the

Agilent-Signatone B1505A device analyzer, the gate voltage

of the memory cells is swept at �12/12 V backward and for-

ward. The obtained memory hysteresis shows a 6.5 V, 5.5 V,

and 0.9 V for the memories with GNIZ, GN, and ZnO charge

trapping layer, respectively. The high frequency C-V mea-

surement at 12/�12 V for the memory structure depicted in

Figure 1 is shown in Figure 2. The significant positive shift

of the VFB of the erased state indicates that there is a signifi-

cant amount of electrons trapped at the interfacial or in the

oxide layer. In fact, the positive shift confirms the n-type

nature of the ZnO layer which is due to crystallographic

defects such as interstitial zinc and oxygen vacancies.6–12 In

0003-6951/2014/105(3)/033102/4/$30.00 VC 2014 AIP Publishing LLC105, 033102-1
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addition, by sweeping the gate voltage from 12 to �12 V, the

C-V curve is observed to shift positively, which indicates

that the memory is being programmed by trapping electrons

in the charge storage layer.

Moreover, the C-V hysteresis measurement is repeated

on the three fabricated devices at different sweeping voltages.

The obtained Vt shifts plotted in Figure 3 show that GNIZ

memory provides the largest memory window. This is due to

the thinner tunnel oxide, which exponentially increases the

charge emission and tunneling probability, in addition to the

additional trap states provided by the ZnO. Moreover, the fig-

ure shows that the memory with only ZnO layer does not

provide a remarkable Vt shift even at high sweeping voltages

(12/�12 V). This indicates that the ZnO in the GNIZ struc-

ture provides few additional trap states; however, it mainly

enhances the electron retention in the graphene nanoplatelets

by reducing the charge back-tunneling probability.

Since the ZnO is shown to provide only few trap states,

the charge trap states density of the graphene nanoplatelets

can be calculated by adopting the following equation:11,13

Nt ¼
Ct � DVt

q
(1)

where Ct is the capacitance of the memory per unit area, DVt

is the Vt shift, and q is the elementary charge. At 6/�6 V

sweeping voltage, with a 4 V Vt shift, and Ct is 43.31 nF/cm2,

the charge trap states density is roughly 1.08� 1012 cm�2.

The virgin memory cell Vt shift is measured at room

temperature and plotted vs. time as shown in Figure 4.

Usually, thinner tunnel oxides are associated with a degraded

retention characteristic. However, the memory with GNIZ

which has a 1.4 nm thinner tunnel oxide (35% thinner)

showed an improved retention characteristic, where the

extrapolation to 10 yr indicates a loss of 25% of the stored

charge in the GNIZ memory while 29% in the GN memory.

The retention measurements show that the use of ZnO in the

charge storage media allows for further scaling of the tunnel

oxide thickness without degrading the reliability or the reten-

tion properties of the memory.

Furthermore, the endurance characteristic of the memo-

ries with GNIZ and GN are studied. A fresh memory cell

hysteresis is measured at room temperature at 10/�10 V for-

ward and backward up to 104 cycles as shown in Figure 5.

The Vt shift slightly reduced after 104 which proves the good

endurance of such memory structure. In addition, the mem-

ory with GNIZ showed an improved endurance where its Vt

shift reduced by 13.3%, while the memory with only GN

showed a reduction of 17% after 104 memory hysteresis

cycles.

The energy band diagram of the structure with GNIZ is

depicted in Figure 6 using the reported work-function, elec-

tron affinities, and bandgap of the different materials.7,14,15

The conduction band offset between the Si substrate and

tunnel oxide is smaller than the valence band offset, which

makes the electrons emission probability much higher

(1.47 eV< 4.08 eV). This was proven in Figure 2, where the

positive shift of the programmed state indicated electrons

storage in the charge trapping layer.

Since the ZnO is observed to provide few trap states,

then the majority of the electrons are expected to tunnel

FIG. 2. C-V measurement at 12/-12 V (forward and backward) of the mem-

ory with GNIZ. The measurement is done at room temperature.

FIG. 3. Measured Vt shifts at different gate sweeping voltages for the three

memory structures.

FIG. 4. Vt shift vs. time extrapolated to 10 yr with GNIZ and GN charge

trapping layer.

FIG. 1. Cross sectional illustration of the fabricated MOS memory with

GNIZ.
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through the tunneling oxide to the ZnO layer and then be

swept by the electric field and get trapped within the

graphene nanoplatelets. Also, the additional thickness of the

ZnO and the large conduction band offset between graphene

and the tunnel oxide reduces the probability of back-

tunneling, which improves the retention characteristic of the

memory as proven in Figure 4.

The electric field across the tunnel oxide of the memory

with GN is calculated using the following Gauss’s law:16

21E1 ¼ 22E2 þ Q; (2)

Vg ¼ V1 þ V2 ¼ d1E1 þ d2E2; (3)

where 2 is the dielectric permittivity, E is the electric field in

the oxide, Q is the stored charge in the graphene nanoplate-

lets, V is the voltage across the oxide, d is the oxide thick-

ness, and the subscripts 1 and 2 correspond to the tunnel and

blocking oxides, respectively. The resulting electric field

through the tunnel oxide is the following:

E1 ¼
Vg

d1 þ d2

21

22

� �þ Q

21 þ 22

d1

d2

� � : (4)

The natural logarithm of the Vt shift divided by the square of

the electric field is plotted vs. the reciprocal of the electric

field as shown in Figure 7. The linear trend indicates that the

dominant electron emission mechanism at an electric field in

the tunnel oxide E� 5.57 MV/cm (corresponding to a 6 V

gate voltage) is Fowler-Nordheim tunneling (F-N). In F-N

tunneling, the charges are injected by tunneling into the con-

duction band of the oxide through a triangular energy barrier

and then are swept by the electric field into the charge trap-

ping layer. The emission rate of charges in F-N tunneling

follows the equation:16

J ¼ C1E2
oxe�

C2
Eox ; (5)

where J is the F-N tunneling current, Eox is the electric field

across the tunnel oxide, and C1 and C2 are constants in terms

of the effective mass and barrier height.

However, the addition of ZnO to the charge storage

media will affect the electric field. Since the ALD ZnO is

n-type, the electric field across the tunnel oxide is expected

to be smaller than in the case of the GN structure. However,

in the case of the GNIZ memory, the tunnel oxide thickness

is 1.4 nm thinner, which would increase the electric field lin-

early and electron tunneling probability exponentially. Based

on the larger Vt shifts obtained with GNIZ, as shown in

Figure 3, the electric field and tunneling probability through

the tunnel oxide are expected to be higher than that in the

GN case. However, in CMOS technology,17,18 F-N is consid-

ered as the tunneling mechanism which requires the highest

electric field, therefore, F-N tunneling is expected to be the

dominant electron emission mechanism in the memory with

GNIZ as well. As a result, the retention of the MOS memory

structure with graphene-nanoplatelets embedded in ZnO

is expected to be independent of temperature since F-N

tunneling is independent of temperature.19 This have been

demonstrated in Ref. 19, where the retention of fabricated

Metal-Al2O3-Nitride-Al2O3-Semiconductor (MANAS) mem-

ory devices is insensitive to temperature and the main mecha-

nism is F-N tunneling.

In conclusion, the use of graphene nanoplatelets in the

charge storage media in charge trapping memory is demon-

strated. With GN, the memory device showed a large Vt shift

at 10/�10 V, good retention, and endurance characteristics.

The use of a thinner tunnel oxide and the addition of ZnO to

the charge storage media showed an improved performance of

the memory, where 4 V Vt shift is achieved at 6/�6 V, with an

expected loss of 25% of stored charges after 10 yr, and an en-

durance greater than 104 memory hysteresis cycle. The emis-

sion mechanism in such memory devices at electric fields

higher than 5.57 MV/cm is found to be dominated by Fowler-

Nordheim tunneling. Finally, this work shows that graphene

nanoplatelets are a good candidate for charge trapping layers

in future low-power and low-cost nonvolatile memory devices.
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FIG. 5. Endurance measurement showing threshold voltage shift vs. number

of hysteresis measurement cycles.

FIG. 6. Energy band diagram of the memory with GNIZ charge trapping

layer. The large conduction band offset between graphene and tunnel oxide

exponentially reduces the charge leakage.

FIG. 7. Plot showing the natural logarithm of the Vt shift divided by the

square of the electric field is plotted vs. the reciprocal of the electric field.

The linear trend indicates that Fowler-Nordheim is the dominant emission

mechanism at an oxide electric field of 5.57 MV/cm.
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