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Airline operations are subject to frequent disruptions typically due to unexpected aircraft maintenance requirements and
undesirable weather conditions. Recovery from a disruption often involves propagating delays in downstream flights and
increasing cruise stage speed when possible in an effort to contain the delays. However, there is a critical trade-off between
fuel consumption (and its adverse impact on air quality and greenhouse gas emissions) and cruise speed. Here we consider
delays caused by such disruptions and propose a flight rescheduling model that includes adjusting cruise stage speed on a set
of affected and unaffected flights as well as swapping aircraft optimally.

To the best of our knowledge, this is the first study in which the cruise speed is explicitly included as a decision variable
into an airline recovery optimization model along with the environmental constraints and costs. The proposed model allows
one to investigate the trade-off between flight delays and the cost of recovery. We show that the optimization approach leads
to significant cost savings compared to the popular recovery method delay propagation.

Flight time controllability, nonlinear delay, fuel burn and CO2 emission cost functions, and binary aircraft swapping
decisions complicate the aircraft recovery problem significantly. In order to mitigate the computational difficulty we utilize the
recent advances in conic mixed integer programming and propose a strengthened formulation so that the nonlinear mixed
integer recovery optimization model can be solved efficiently. Our computational tests on realistic cases indicate that the
proposed model may be used by operations controllers to manage disruptions in real time in an optimal manner instead of
relying on ad-hoc heuristic approaches.
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1. Introduction
Although the airline industry has been very successful in
implementing optimization tools for the planning and schedul-
ing of resources, dealing with frequent disruptions in daily
operations remains a significant challenge. According to a
recent report by Schumer and Maloney (2008), flight delays
are increasing in an alarming manner and consequently
causing enormous negative economic impact. They attribute
the majority of flight delays in 2007 to late-arriving aircraft
and disruptions in the national aviation system. On the other
hand, rising fuel costs and emerging CO2 emissions restric-
tions impose additional challenges for speedy disruption
recovery. In this paper we propose a novel rescheduling
optimization model that explicitly accounts for delay as well
as fuel burn and CO2 emission costs by incorporating cruise
speed control into airline disruption management.

Airline operations planning is done in a sequential manner
(see e.g., Clausen et al. 2010). First, the flight schedule is
determined based on forecasts of passenger demand and
other relevant information. Then specific types of aircraft are
assigned to individual flights in the schedule, and sequences

of flights are generated for each fleet (these planning stages
are called fleet assignment and aircraft routing, respectively).
In the subsequent crew scheduling phase, flight crew and
cabin crew are assigned to each flight based on the already
determined aircraft rotations. However, on the day of opera-
tion, the planned aircraft schedules can become infeasible
because of external disruptions or internal failures. As dis-
cussed in Barnhart (2009, p. 273), “on the side of airlines,
decision support software for recovery is perhaps at the stage
where planning software was 15 years ago. While research
is active and hardware and data support have improved
substantially, optimization based decision support tools for
rapid recovery are still at an early stage of implementation
at the major airlines. This represents a difficult, but crucial
future challenge.” A similar conclusion is reached by Rapajic
(2009): “Despite airlines’ tremendous efforts to streamline
their operations to minimize controllable costs and improve
flight punctuality, system inefficiencies are continuously on
the increase. They inevitably lead to a higher number of
operational disruptions, and consequently unforeseen losses.”

For a recent survey on airline schedule recovery, we
refer the reader to Ball et al. (2007). A general review on
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disruption management, including airline operations, can be
found in Yu and Qi (2004). As summarized in “Irregular
Operations” by Barnhart (2009), when disruptions occur,
airline operations controllers adjust scheduled operations by

1. delaying flight departures until aircraft and/or crews
are ready;

2. canceling flights;
3. rerouting or swapping aircraft (i.e., reassigning aircraft

among a subset of flights);
4. calling in new crews or reassigning existing crews;
5. postponing the departure times of flights to prevent

connecting passengers from missing their connections; and
6. reaccommodating disrupted passengers.
Burke et al. (2010) use a simulation model to observe

the impact of a randomly generated disruption on KLM
airlines’ schedule. Their recovery strategies include swapping
aircraft, canceling flights, and accepting delays. Petersen
et al. (2012) study an integrated airline recovery problem
using a single-day horizon and propose a separate mixed
integer mathematical model for the schedule, aircraft, crew,
and passenger recovery problems. They utilize a Benders
decomposition/column generation approach to achieve the
coordination among these four mathematical models. They
also propose a sequential recovery algorithm to handle
larger problems. For a recent review on airline disruption
management, we refer the reader to Clausen et al. (2010).
The earlier studies on aircraft recovery do not consider
the speed control. In air traffic flow management literature,
Bertsimas et al. (2011) give an integer programming model
for deciding on an optimum combination flow management
actions, including ground holding, rerouting, and speed
control. In their model, the speed control is achieved with
a number of discrete time units an aircraft must spend in
each sector. The associated fuel burn and CO2 emissions
cost of adjusting speed are not considered. Vela et al. (2010)
propose local flight based heading and speed changes to
deal with the air traffic conflict resolution problem while
minimizing fuel costs. Sherali et al. (2006) report that the
airline optimization models are quite sensitive to the fuel
consumption and flight arrival delay costs.

Airline operations control centers prepare a flight plan
for each flight of the aircraft that can be programmed into
aircraft automation (Midkiff et al. 2009). The plan includes
selecting a route by considering timing, fuel burn, and
ride conditions for the flight. While preparing a flight plan,
dispatchers also consider company priorities (e.g., minimum
fuel trajectory versus minimum time trajectory). Currently,
these priorities are quantified via a “cost index” parameter,
which is the ratio of time-related costs to fuel-related costs
and is a major driver of the flight plan optimization as
minimum time and minimum fuel trajectories can be quite
different (Airbus 1998). Cook et al. (2009) propose dynamic
cost indexing, allowing airlines to compute and change the
cost index during the flight.

Although in the airline industry there is a realization
that the choice of cruise speed has a critical impact on the

trade-off between reducing delays versus reducing fuel cost,
Boeing (2007) cites that airlines do not take full advantage of
this alternative, although a recent airline case study suggested
a potential annual savings of $4 to $5 million, “with a
negligible effect on the schedule” (Cook et al. 2009).

The current industry standard of cost indexing (CI) as
outlined in Airbus (1998) and Boeing (2007) does not fully
capture the flexibility of controllable flight times. In this
approach, the cockpit crew of a delayed flight sets a number
between 0 and 500 or 0 and 9999 depending on the aircraft
model to assess the impact of the ratio of time-related costs to
fuel-related costs based on the locally available information
at that time. However, it may also be preferable to speed up
an on-time flight to arrive early to the announced schedule
to be able to swap the aircraft with another one so as to
minimize the overall cost. Since the pilots cannot foresee
the impact of their local solutions on the overall network, it
is very difficult to assess and take full advantage of speed
control and how it could be useful to decrease the delay
propagations in the network. For example, acknowledging
the drawbacks of using a predetermined CI value, Jeppesen
Technology Services–Aviation Operations also recommends
calculating a dynamic CI value for each flight based on
departure time estimates (Altus 2010). By stating weaknesses
in the practical application of cost index, Air Canada utilizes
a city-pair cost index values as described in Saint-Martin
and Wagner (2009). It also states that such an approach
requires the corporate schedule to be adjusted for all fleets
on all routes, and hence it needs a systemwide global
optimization tool.

Although it is important to have a flight management
system that can control the cost indices dynamically to
deal with an unexpected event (such as weather changes or
dealing with disruptions), the benefits of such a local speed
adjustment tool will be limited without a global optimization.
By using a mathematical model, we can evaluate possible
trade-offs associated with speed control and/or swapping
aircraft explicitly (two most popular recovery strategies
in the airline industry Kohl et al. 2007), to find a global
optimum for the overall network.

Moreover, with the application of new environmental reg-
ulations on fuel burn and greenhouse gas emissions consider-
ations are becoming significantly more important for airlines.
As of January 1, 2012, all airlines operating on EU airports
are brought into the European Union’s Emissions Trading
System (ETS), joining more than 10,000 power and indus-
trial plants that have been active in the scheme since 2005.
Airlines incur additional costs for acquiring the required
CO2 permits in carbon markets. For example, Lowther et al.
(2008) have shown that continuous descent arrival proce-
dures could be used to minimize the required thrust during
arrival and the approach to landing, thereby reducing noise,
emissions, and fuel usage. There are a few commercial
applications such as the Attila aircraft arrival management
system by the ATH group (http://www.athgrp.com/) that
provides required time of arrival recommendation to airlines
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taking into account passenger connections, gate availability,
and fuel consumption.

The major difficulty with including speed control into
airline recovery is that the fuel burn and carbon emissions
are nonlinear in cruise speed. Consequently, modeling the
nonlinear cost function accurately and solving the result-
ing nonlinear mixed integer programming formulation in
a reasonable amount of time are critical for successful
implementation of such an approach in real time. To this
end we utilize recent advances in conic quadratic mixed
integer optimization and propose a strengthened formulation
so that the proposed nonlinear mixed integer optimization
model can be used by operations controllers to deal with
disruptions in real time to find optimal solutions rather than
relying on ad hoc heuristic approaches. To the best of our
knowledge, we propose the first mathematical model that
considers the speed control as well as its impact on fuel cost
and air surface quality as a recovery strategy to deal with
disruptions.

This paper is organized as follows. In §2, we first give a
formal definition of the aircraft recovery problem with cruise
speed control and then present a numerical example illustrat-
ing the benefit of flight time controllability in disruption
management. In §3 we give a brief overview of conic integer
programming and review a conic strengthening method
utilized in the current paper. In §4 we present nonlinear
mixed integer optimization models for a single aircraft type
and multiple aircraft types, respectively. In §5, we describe
the proposed conic strengthening of the model. In §6 we give
three possible extensions that incorporate nonlinear delay
functions and match-up rescheduling. We test the proposed
mathematical model on a real-world data computationally in
§7 and conclude with a few final remarks in §8.

2. Cruise Speed Control and
Numerical Example

2.1. Modeling Cost of Cruise Stage Compression

A typical flight involves several stages: taxi-out, takeoff,
climb, cruise, descent, final approach, landing, and taxi-in.
Although the cruise stage is the most fuel efficient portion of
the flight, most of the fuel is burned during this longest stage
for a typical flight. There is also little room for planned
compression in other stages because they are generally
dictated by local traffic and safety considerations. Therefore,
for modeling fuel and carbon emissions costs, we ignore the
fuel consumption changes in other stages. Since one of
the main contributions of this study is adjusting the cruise
speed to compensate for the time losses due to a disruption,
we need to consider the adverse effect of increasing cruise
speed on fuel and carbon emissions costs. In this section,
we will first discuss how we can quantify the impact of
cruise speed on fuel and carbon emissions costs and then
demonstrate it on a numerical example.

2.1.1. Fuel Cost. Estimating the fuel burn of an aircraft
during a flight is a critical task. There has been a growing
interest in fuel burn performance of aircraft. Aircraft man-
ufacturers, consultants, aviation authorities, and scholars
have published numerous papers and reports on this topic.
A methodology that has been widely used in the literature is
developed by the Base of Aircraft Data (BADA) project of
EUROCONTROL, the air traffic management organization
of Europe (EUROCONTROL 2009). In this paper, we adopt
the cruise stage fuel flow model developed by BADA.

The fuel flow model of BADA is based on the total
energy model as discussed in detail in Appendix EC.1
(available as supplemental material at http://dx.doi.org/
10.1287/opre.2014.1279). Consequently, for a given mass
and altitude, an aircraft’s cruise stage fuel burn rate (kg/min)
as a function of speed v (km/min) can be calculated as

fcr4v5= c1v
3
+ c2v

2
+

c3

v
+

c4

v2
1 (1)

where coefficients ci > 0, i = 11 0 0 0 14, are expressed in terms
of aircraft specific drag and fuel consumption coefficients
as well as mass of aircraft, air density at given altitude,
and gravitational acceleration. These coefficients can be
obtained from the BADA user manual for 399 aircraft types
(EUROCONTROL 2012).

Given the fuel burn rate expression, we can formulate the
total fuel consumption at cruise stage. Assuming that the
distance flown at cruise stage is fixed dcr and the duration
of cruise stage is dcr/v, we can formulate the total fuel
consumption as below:

F 4v5=
dcr

v
· fcr4v5= dcr

(

c1v
2
+ c2v+

c3

v2
+

c4

v3

)

· (2)

An aircraft is most fuel efficient at its maximum range
cruise (MRC) speed. In other words, the fuel consumption
function, F 4v5, is minimized at MRC. Although from a fuel
consumption perspective, it is ideal to fly at MRC speed, cost
of time and scheduling considerations often dictate higher
speeds. Note that F 4v5 is a strictly convex and increasing for
velocities higher than its minimizer MRC speed.

In the original schedule let the planned cruise speed be vo,
which might be greater than the MRC speed due to the
labor and operating costs, and cruise time be to. Let v be
the cruise speed variable; then we obtain the fuel cost change
for the flight as

ãFuel Cost = pfuel4F 4v5− F 4vo551 (3)

where pfuel is the price for jet fuel ($/kg). In Figure 1,
we illustrate the percentage additional fuel cost as a func-
tion of speed increase from MRC speed as described in
Boeing (2007).

Furthermore, one of the key factors in flight planning is
determining the fuel load. Considerations in determining the
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Figure 1. Additional fuel cost as a function of speed
increase ãv.

Δ

Δ

fuel load include fuel requirements to destination includ-
ing reserves (which vary depending on the type of flight,
e.g., over water); destination weather and alternatives; off-
optimum speed or altitude requirements; and mechanical
discrepancies of the aircraft. Therefore, there is an upper
bound on the cruise speed due to various physical require-
ments such as fuel storage capacity, cabin pressure and noise
constraints.

2.1.2. CO2 Emission Cost. The principal greenhouse
gas pollutant emitted from aviation is carbon dioxide, CO2.
Therefore, we need to assess the adverse impact of speed
adjustments on the CO2 emission of an aircraft during
the cruise stage of a flight. There are several methods to
estimate the carbon emission such as the advanced emission
model developed by EUROCONTROL and the System for
assessing Aviation’s Global Emissions (SAGE) by the U.S.
Federal Aviation Administration (FAA). In both models,
the fuel burn calculation is based on the data stored in
BADA as discussed earlier. The CO2 emission is shown
to be proportional to the fuel consumption and calculated
by using Boeing Fuel Flow Method 2 (BFFM2) initially
developed by the Boeing Company (DuBois and Paynter
2006). Furthermore, according to Boeing (2009), more than
20 pounds of CO2 is emitted per U.S. gallon of fuel burned.
According to EUROCONTROL (2001) and ICAO (2010),
3.15 kilograms of CO2 is produced for every kilogram of
fuel burn. Validation assessments conducted by Kim et al.
(2007) have shown that SAGE can predict fuel burn to
within 3% using data from 60,000 flights of a major U.S.
airline and 20,000 flights of two major Japanese airlines.
Thus, the CO2 emission change during the cruise stage can
be formulated as

ãCarbon Emission Cost = pCO2
·� · 4F 4v5− F 4vo551 (4)

where pCO2
is the cost of carbon emission ($/kg) and � is

CO2 emission constant.

Table 1. Schedules for aircraft N475AA and N554AA.

Planned Planned Planned
Flight Departure Arrival departure flight arrival

Tail no. no. airport airport time time time

N475AA 407 ORD STL 6:20 1:10 7:30
755 STL ORD 8:35 1:15 9:50
755 ORD SAT 10:45 3:00 13:45
408 SAT ORD 14:30 2:40 17:10
408 ORD PHL 18:05 2:05 20:10

N554AA 2463 ORD MCI 6:25 1:30 7:55
754 MCI ORD 8:40 1:30 10:10

2321 ORD DFW 11:15 2:35 13:50
2356 DFW ORD 14:40 2:20 17:00
2487 ORD DEN 17:50 2:45 20:35

2.2. A Numerical Example

We now give a numerical example to illustrate how cruise
speed control and swapping aircraft can be utilized for
rescheduling after a disruption. We consider two aircraft with
schedules retrieved from the U.S. Department of Transporta-
tion Bureau of Transportation Statistics Airline On-Time
Performance Data database (BTS 2010).

Table 1 shows the tail numbers and flight numbers along
with the origin and destination airports and planned departure
and arrival times in local ORD time for all flights in the
schedule. Each aircraft starts its route from ORD early in
the morning and finishes at different airports late in the
evening. The flights with the same flight number are denoted
as through flights, such as flights 755 and 408.

Figure 2 gives the time-space network representation of
the original schedule for considered aircraft N554AA and
N475AA along with their paths. The flight arcs originate
from the departure airport and end at destination airport.
Ground arcs span the time the aircraft spend on the ground.
The figure also shows the planned departure and arrival
times for each flight.

Figure 2. Time space network for aircraft N475AA and
N554AA.
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In this example, we assume that aircraft N475AA and
N554AA are of the same type. Each aircraft has the same
number of seats and all seats are occupied in each flight.
Therefore, any swap between two aircraft does not cause
spilled passengers. Using the formula given in (4), total fuel
burn (in kgs) for the considered aircraft type and flight l is
calculated as

Fl4v5= dcr
l

(

0001v2
+ 0016v+

0074
v2

+
21200
v3

)

1

where dcr
l is the distance flown at cruise stage of flight l.

We assume that each flight is planned with a cruise speed
of 14 km/min in the original schedule. For each aircraft,
we assume a minimum turnaround time of 30 minutes on
the ground between landing and next departure. We also
assume that for each flight, noncruise stages take 30 minutes.
Assuming pfuel = 1 $/kg and pCO2

= 0002 $/kg, the cruise
stage fuel and carbon costs for the initial schedule are
calculated in Table 2.

On the given schedule for two aircraft, let us assume that
the departure of the second flight for N475AA is delayed
for 90 minutes. In coping with the delay, one alternative is
right-shifting all succeeding flights of N475AA, called the
delay propagation. In delay propagation, the only way to
reduce delays is utilizing the idle times on ground. Due to
departure delay, actual arrival time of flight 755(1) will
be 11:20. Then, the aircraft will be available for the next
departure at 11:50, so the departure of flight 755(2) will be
delayed by 65 minutes. Similarly, flights 408(1) and 408(2)
will be delayed by 50 and 25 minutes, respectively. The
initial delay on flight 755(1) propagates along the path of
aircraft N475AA. The resulting schedule and corresponding
delay costs for each flight is given in Table 3. The total delay
cost for delay propagation is then $9,125. In Figure 3, we
give a time space network representation of the new schedule.
In this figure, dotted arcs show the original schedule of
flights. The figure shows that for four flights of N475AA,
we experience arrival delays. Getting closer to the end of
the day, delays become shorter, which is due to available
idle times for N475AA in the original schedule.

An alternative way of repairing a disrupted schedule is
compressing only the cruise speed of the aircraft, denoted as

Table 2. Cruise stage cost calculation for initial schedule.

Cruise time Fuel and carbon
Tail no. Flight no. (min) dcr (km) cost ($)

N475AA 407 40 560 2197907
755 45 630 3135201
755 150 21100 11117308
408 130 11820 9168400
408 95 11330 7107608

N554AA 2463 60 840 4146905
754 60 840 4146905

2321 125 11750 9131105
2356 110 11540 8119401
2487 135 11890 10105604

Table 3. Cost calculation for delay propagation (DP).

Arrival Unit delay Delay
Tail no. Flight no. delay (min) cost ($/min) cost ($)

N475AA 755 90 30 2,700
755 65 45 2,925
408 50 50 2,500
408 25 40 1,000

Total 230 — 9,125

CSC strategy, while minimizing the sum of fuel, carbon
emission and delay costs simultaneously as discussed in
detail in §4.2. Disabling swaps and solving the mathematical
model for the given disruption, we achieved a new schedule
which is given in Figure 4. The length of arrival delays,
cruise time compression (ãt) and the speed changes (ãv)
along with resulting costs are given in Table 4. The results
show that the total delay cost is reduced to 4,770 from 9,125

Figure 3. Time space network—after DP.
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Figure 4. Time space network—after CSC.
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Table 4. Cost calculation for CSC.

Tail no. Flight no. Arrival delay (min) ãt ãv (km/min) ã fuel cost ã carbon cost Delay cost ($) Total cost

N475AA 407 0 0 0 0 0 0 0
755 84 6 2 41203 26 21520 2195803
755 40 19 2 1137404 8606 11800 31261
408 9 16 2 1119101 7500 450 1171602
408 0 0 0 0 0 0 0

Total 133 — — 2197708 18706 41770 7193505

Table 5. Cost calculation for S-CSC.

Tail no. Flight no. Arrival delay (min) ãt ãv ã fuel cost ã carbon cost Delay cost ($) Total cost

N475AA 407 0 0 0 0 0 0 0
755 84 6 2 41203 26 21520 2195803

2321 13 16 2 1114503 7202 650 1186705
2356 0 0 0 0 0 0 0
2487 0 0 0 0 0 0 0

Total 97 — — 1155706 9802 31170 4182508

by speeding up the aircraft N475AA on flights 755 and
408. As a result, additional fuel and CO2 emission costs for
N475AA are 2,977.9 and 187.6, respectively. In the new
schedule, aircraft N475AA recovered from disruption and
could catch the initial schedule at the departure time of
its last flight. The recovery of the schedule was possible
by adjusting speed and also utilizing idle times found in
the schedule.

The final approach is considering aircraft swaps together
with the cruise speed control, denoted as S-CSC strategy. In
this strategy, two aircraft arriving at the same airport within
a reasonably short period of time can be swapped. There
may exist further restrictions on swaps like maintenance
requirements and crew eligibility. In this example, aircraft
can swap at ORD after completing flights 754 and 755(1),
or 408 and 2356. The new schedule achieved by S-CSC is
given in Figure 5. In an optimal solution of S-CSC model,
two aircraft are swapped at ORD after completing flights

Figure 5. Time space network—after S-CSC.
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754 and 755(1). N475AA takes over flights 2321, 2356,
and 2487. Flights 2321 experiences departure and arrival
delays in this case, whereas flights 2356 and 2487 are on
time. To reduce delay costs, the cruise speed is increased on
flight 2321 assigned to N475AA in the optimal solution.
On the other hand, N554AA operates flights 755 and 408
without any departure or arrival delays. Furthermore, these
two swaps could be performed without incurring any crew
deadhead cost. Cost calculations for S-CSC strategy is given
in Table 5.

This example shows that when a disruption occurs, the
cruise speed control can be an effective tool to decrease
disruption costs. Here one should decide on the flights for
which the cruise speed should be increased and the level
of cruising speed. We also see that when rescheduling the
flights, swapping can be used with cruise speed control. In
this case, one should decide if there exists a feasible swap
that can improve the overall cost. If there are alternative
swaps, then which swap to select is a critical decision. Swap
decisions also affect cruise speed decisions, as we see in
the example.

3. Conic Integer Programming
In this section we give a brief overview of conic integer
programming. Conic optimization refers to optimization
of a linear function over conic inequalities. Since the late
1980s starting with Nesterov and Nemirovski (1988, 1990,
1991), convex conic optimization has experienced significant
advances. The large number of practical applications and the
availability of efficient algorithms make the conic quadratic
(second-order conic) case particularly interesting. A conic
quadratic constraint on x ∈Rn is a constraint of the form

�Ax− b�¶ c′x−d0

Here �� is the L2 norm, A is an m× n-matrix, b is an
m-column vector, c is an n-column vector, and d is a scalar.
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We refer the reader to Lobo et al. (1998) and Alizadeh and
Goldfarb (2003) for reviews on conic quadratic optimization
and its applications.

Although there is an extensive body of literature of
convex conic quadratic optimization, development in conic
optimization with integer variables is quite recent. Çezik and
Iyengar (2005) give linear and convex quadratic cuts for
mixed 0-1 conic programs. Atamtürk and Narayanan (2008)
introduce polymatroid inequalities to help solve special
structured conic quadratic programs efficiently. Atamtürk
and Narayanan (2010) give conic mixed integer rounding
inequalities for conic quadratic mixed integer programs.
Atamtürk and Narayanan (2011) propose lifting methods for
conic mixed integer programming. With the availability of
commercial solvers, conic integer models recently started to
see use in applications in portfolio optimization (Vielma
et al. 2008), scheduling (Aktürk et al. 2010), and supply
chain problems (Atamtürk et al. 2012).

One of the common uses of conic quadratic inequalities is
to represent a hyperbolic inequality

x2
1 ¶ x2x31 (5)

on x1, x2, x3 ¾ 0. It is easily verified that each hyperbolic
inequality (5) can then be equivalently written as a conic
quadratic inequality

�42x11 x2 − x35�¶ x2 + x30 (6)

In §5, we will present strong mixed 0-1 models using a
series of hyperbolic inequalities.

4. Mathematical Formulations
In this section, we give the formal definition and mathemati-
cal formulation of the problem. For ease of readability we
start with the simpler case for a single aircraft type and then
extend the model for multiple aircraft types case.

4.1. Formulation for Single Aircraft Type

We first give a list of parameters and decision variables used
in the model.

Parameters:
L: set of flights in the schedule;
Ld: set of initially disrupted flights;
dl: original departure time of flight l;
rl: original arrival time of flight l;
al: turnaround time of flight l (min);
wl: arrival delay cost for flight l ($/min);
hlj : crew deadhead cost of swap between flights l and j;

S4l5: set of flights that may be swapped with flight l;
vol : original cruise speed for the aircraft on flight l;
vul : maximum cruise speed of flight l;
tol : original cruise time for the aircraft on flight l;
tncl : noncruise time of flight time for the aircraft on

flight l;

`ul : upper bound on the departure delay for flight l;
¯̀
l: initial departure delay for flight l ∈ Ld;

n4l5: immediate successor flight of flight l in the original
schedule;

�: CO2 emission constant (3.15);
Cmax: overall upper bound on the carbon emission of all

flights; and
Fl4vl5: cruise stage fuel burn as a function velocity for

flight l.

Decision variables:
vl: cruise speed for aircraft on flight l (km/min);
tl: cruise time for aircraft on flight l (min);
`l: departure delay on flight l (min); and
xlj : 1 if the aircraft of flight l and flight j are swapped

at their destination and 0 otherwise.

Then with a departure delay of `l ¾ 0, the new arrival time
of flight l with new cruise time tl is r̃l = dl + `l + tncl + tl =
rl + `l + tl − tol 3 therefore, the delay incurred equals r̃l − rl =
`l + tl − tol 0

Given a set of disrupted flights with certain departure
delays, the model considers rescheduling all subsequent
flights within a rescheduling horizon. The goal is to find
new cruise speed levels and aircraft swaps to minimize total
disruption cost including delay, fuel, CO2 emission, and
swap costs. In this model, departure delays are tracked in two
ways. If a flight is a disrupted one, then the departure delay
is known at the beginning and is fixed in the model, denoted
as ¯̀

l. Otherwise, a flight may experience a propagated delay.
A propagated delay, if it exists, is calculated in the following
way. For each flight, the model calculates the earliest time
the assigned aircraft is ready for the departure of a flight.
If this ready time is later than the planned departure time,
then the flight experiences a departure delay. If the aircraft of
flight l is not swapped, then the ready time for flight n4l5 is
determined by actual arrival time of flight l and turnaround
time. If the aircraft of flights l1 and l2 are swapped, then
aircraft ready time for flight n4l15 (n4l25) is determined by l2
(respectively, l1).

Using the notation above, we now state the mathematical
model of the problem:

min
{

∑

l∈L

wl max8`l + tl − tol 109+
∑

l∈L

∑

j∈S4l5

hljxlj

+
∑

l∈L

4pfuel +pCO2
�54Fl4vl5− Fl4v

o
l 55

}

(7)

s.t. dcr
l = vltl1 l ∈ L1 (8)

0 ¶ `l ¶ `ul 1 l ∈ L1 (9)

`l = ¯̀
l1 l ∈ Ld1 (10)

vol ¶ vl ¶ vul 1 l ∈ L1 (11)
∑

l∈L

�4Fl4vl5− Fl4v
o
l 55¶Cmax1 (12)
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rl + `l + tl − tol + al ¶ dn4l5 + `n4l5

+
∑

j∈S4l5

[

4rl + `l + tl − tol + al5

−4rj + `j + tj − toj + aj5
]

xlj1 l ∈ L1 (13)
∑

j∈S4l5

xlj ¶ 11 l ∈ L1 (14)

xlj = xjl1 l ∈ L1 j ∈ S4l51 (15)

xlj ∈ 801191 l ∈ L1 j ∈ S4l50 (16)

For a given initial schedule, our aim is to find a new
schedule under a single (or multiple) disruption(s) to mini-
mize the sum of four different cost components. The first
term in the objective function is the sum of tardiness cost
for all flights. If the departure delay cannot be recovered by
flight time compression, then a tardiness cost is incurred. The
second term in the objective function is the deadhead cost,
which is incurred if two aircraft are swapped and if they end
up at different airports than originally planned in the initial
schedule. The third term in the objective function is the
additional fuel and carbon emission cost due to increased
cruise speed in the new schedule.

Constraint (8) sets the relationship between the cruise
speed and the cruise time. We assume that the cruise flight
distance is constant for a flight and, therefore, it is given
by the product of initial cruise speed (vol ) and initial cruise
time (tol ). Thus, the new cruise speed of an aircraft and the
new cruise time are inversely proportional. Note that this is
a nonlinear constraint.

Moreover, the departure times of the revised schedule
cannot be earlier than the originally scheduled departure
times and cannot be delayed longer than `ul as stated in
Constraint (9). Constraint (10) initializes departure delays
for disrupted flights. Constraint (11) defines the cruise speed
upper bound due to various physical requirements such as
fuel storage capacity, cabin pressure, and noise constraints.

The air surface quality is measured in terms of the carbon
emission as a function of the cruise speed. The environmental
considerations are considered both in the objective function
as well as in the constraints. Constraint (12) guarantees that
the additional total carbon emission cannot exceed an upper
bound Cmax.

In the initial schedule, there is a planned path for each
aircraft. Constraint (13) ensures the precedence relations
among the flights assigned to an aircraft are maintained in
the new schedule. For flight l, if no aircraft swapping takes
place, then constraint (13) ensures that

rl + `l + tl − tol + al ¶ dn4l5 + `n4l53

that is, the next flight n4l5 does not depart before the new
arrival time of flight l plus its turnaround time. On the other
hand, if aircraft of flights l and j are swapped after landing,
then constraint ensures that

rj + `j + tj − toj + aj ¶ dn4l5 + `n4l51

enabling incoming aircraft of flight j to catch flight n4l5.
Note that in the example in Figure 5, we have arriving
aircraft of flight 754 and flight 755(1) swapped. Swap
decisions x7541755415 = x7554151754 = 1 and constraints (13) for
flights 754 and 755(1) ensure the precedence constraints on
the aircraft paths after the swap.

Constraint (14) ensures that there can be at most one
aircraft swap for each pair of flights. Constraint (15) guar-
antees the symmetry of swap decisions between flights.
Finally, constraint (16) states that aircraft swapping decision
variables x are binary.

Operations controllers decide which swaps are possible
4S4l55 because certain conditions must hold for a swap. These
conditions can be related to crew schedules, certifications
of pilots to operate different aircraft, and maintenance
requirements of aircraft.

An interesting feature of the presented model is that the
problem is formulated without keeping track of individual
aircraft, which simplifies the model substantially. Also note
that the formulation is a mixed integer nonlinear optimization
model with convex cost functions in the objective and
nonlinear constraints (8), (12), and (13). However, using the
reformulations described in the subsequent sections, we are
able to solve relatively larger problems very efficiently.

4.2. Formulation for Multiple Aircraft Types

In this section, we generalize to the model for multiple types
of aircraft. Although the ability to swap different types of
aircraft introduces greater flexibility to the rescheduling
problem, it comes with several challenges. First, because
different aircraft types have different fuel burn and CO2

emissions, flight delay and cruise speed decisions depend on
the aircraft assignments. Second, swapping aircraft types
with different number of seats can lead to spilling passengers
on the smaller aircraft.

In order to model the multiple aircraft generalization, we
first redefine some of the parameters and decision variables
by adding an index for aircraft type:

Parameters:
tolf : cruise time of flight l for aircraft type f ;
tnclf : noncruise time of flight l for aircraft type f ;
volf : cruise speed of flight l for aircraft type f ;
vulf : maximum cruise speed of flight l for aircraft type f ;

and
Flf 4vlf 5: fuel burn function for flight l and aircraft type f .

Decision variables:
tlf : cruise time for flight l and aircraft type f ;
vlf : cruise speed for flight l and aircraft type f ; and
`lf : departure delay on flight l for aircraft type f .

We also define the following new parameters and variables:

Parameters:
F : set of aircraft types in the schedule;
fl: aircraft type of flight l in the original schedule;
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psgl: number of passengers on flight l in the original
schedule;

bf : number of seats on aircraft type f ;
P : set of flight paths in the original schedule; and

L4p5: set of flights on path p.

Decision variables:
zlf : 1 if aircraft type f is assigned to flight l and 0

otherwise; and
sl: number of spilled passengers from flight l in the

revised schedule.

For multiple aircraft case we redefine the fuel burn
function as

Flf 4vlf 5=







dcr
l

(

c1v
2
lf +c2vlf +

c3

v2
lf

+
c4

v3
lf

)

1 if zlf =11

01 if zlf =03

(17)

so that if aircraft f is not assigned to flight l, then
Flf 4vlf 5= 0.

Now we describe the constraints used for modeling the
multi-aircraft case. The first constraint assigns a single
aircraft type to each flight:

∑

f∈F

zlf = 11 l ∈ L0

For each aircraft route p ∈ P , let lo4p5 be the first flight of
the route considered in rescheduling. For these flights we set
the aircraft type assignments according to the assignments in
the original schedule:

zlo4p5flo 4p5
= 11 p ∈ P0

The following sets of constraints relate aircraft swap
decisions to aircraft type assignments. If aircraft of flight l
is not swapped with another after landing, then aircraft type
assignments of flights l and its immediate successor n4l5
will be the same. If no aircraft swap occurs immediately
after l, then xlj = 0 for all possible swaps (S4l5). Thus, for
each aircraft type f , zn4l51 f = zl1 f . That is,

�zn4l51 f − zlf �¶
∑

j∈S4l5

xlj1 l ∈ L1 f ∈ F 0

On the other hand, if an aircraft swap occurs between flights
l and j after landing, i.e., xlj = 1, then corresponding aircraft
type assignments will apply for the immediate successors of
l and j . That is, if aircraft of l and j are swapped, then the
successor of l (n4l5) is taken over by the aircraft of j in the
original schedule, i.e., aircraft type fj , modeled as

zn4j5fl ¾ xlj1 l ∈ L1 j ∈ S4l51

zn4l5fj ¾ xlj1 l ∈ L1 j ∈ S4l50

In the multiple aircraft case we include a new constraint,
which limits the number of swaps on a flight route or aircraft:
∑

l∈L4p5

∑

j∈S4l5

xlj ¶ 11 p ∈ P0

When modeling the departure and delay times of flight
n4l5 we need to calculate the ready time of the assigned
aircraft. Ready time of the aircraft of flight n4l5 is the arrival
time of the aircraft’s previous flight and the turnaround
time. The aircraft assigned to a flight is determined by the
previous swaps made on the path. Two cases can occur:

1. No swap is made on the path of the initially assigned
aircraft before flight l.

2. A swap has occurred before flight l.
In the first case, two scenarios may occur. The first one is
that no swap is made after flight l. In this scenario, flight
n4l5 is performed by its initially assigned aircraft. In the
second scenario, flight n4l5 is performed by one of the
aircraft (f ∈ 8fj 2 j ∈ S4l59) swapped with fl. Therefore,
the ready time of the newly assigned aircraft has to be
considered. These two scenarios in the first case are handled
by the following constraint set for each l ∈ L:

dn4l5zn4l5fk + `n4l5fk + 4rk + `uk + ak541 − zn4l5fk5

¾ dkzkfk + akzkfk + `kfk + tkfk + tnckfkzkfk 1

k ∈ 88l9∪ S4l590 (18)

In the second case, a swap has occurred before flight l, so
l is not assigned to its initial aircraft. Taking the single swap
restriction for each aircraft, we can conclude that no swap
will be made on this path after flight l. Thus, we only need
to consider the ready time of the new aircraft of flight l
after completing flight l and its turnaround time. This case
is considered in the following constraint set for each l ∈ L:

dn4l5zn4l5f + `n4l5f ¾ dlzlf + alzlf + `lf + tlf + tnclf zlf 1

f ∈ F \8fl90 (19)

In the case of aircraft types with different number of seats,
swaps may cause spilled passengers. In order to capture the
cost for spilled passengers, we introduce to the model a
new decision variable sl to denote the number of spilled
passengers due to swapping different aircraft types in the
revised schedule. If a certain flight is assigned to a smaller
aircraft (i.e., fewer number of seats than the originally
scheduled aircraft), then some of the passengers already
assigned to subsequent flights will be spilled. We introduce a
penalty cost as a function of the number of spilled passengers.
Let the parameter spl be the cost of each spilled passenger
of flight l and the decision variable sl be the number of
spilled passengers in the revised schedule. The following
constraints define the number of spilled passengers sl on
each flight l ∈ L:

psgl −
∑

f∈F

bf zlf ¾ sl ¾ 01 l ∈ L0
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The complete formulation for multiple aircraft airline
rescheduling problem is given below:

min
{

∑

l∈L

wl max
{[

dl − rl +
∑

f∈F

4`lf + tlf + tnclf zlf 5

]

10
}

+ 4pfuel +pCO2
�5

(

∑

l∈L1f∈F

Flf 4vlf 5−
∑

l∈L

Flfl4v
o
lfl
5

)

+
∑

l∈L

∑

j∈S4l5

hljxlj +
∑

l∈L

splsl

}

(20)

s.t.

dcr
l zlf = vlf tlf 1 l ∈ L1 f ∈ F 3 (21)

0 ¶ `lf ¶ `ul zlf 1 l ∈ L1 f ∈ F 3 (22)

`l = ¯̀
l1 l ∈ Ld3 (23)

volf zlf ¶ vlf ¶ vulf zlf 1 l ∈ L1 f ∈ F 3 (24)

vlf 1 tlf ¾ 01 l ∈ L1 f ∈ F 3 (25)
∑

l∈L

∑

f∈F

�Flf 4vlf 5−
∑

l∈L

�Flfl4v
o
lfl
5¶Cmax3 (26)

dn4l5zn4l5fk + `n4l5fk + 4rk + `uk + ak541 − zn4l5fk5

¾ dkzkfk + akzkfk + `kfk + tkfk + tnckfkzkfk 1

l ∈ L k ∈ 88l9∪ S4l593 (27)

dn4l5zn4l5f + `n4l5f ¾ dlzlf + alzlf + `lf + tlf + tnclf zlf 1

l ∈ L1 f ∈ F \8fl93 (28)
∑

l∈L4p5

∑

j∈S4l5

xlj ¶ 11 p ∈ P3 (29)

∑

j∈S4l5

xlj ¶ 11 l ∈ L3 (30)

xlj = xjl1 l ∈ L1 j ∈ S4l53 (31)

psgl −
∑

f∈F

bf zlf ¾ sl1 l ∈ L3 (32)

∑

f∈F

zlf = 11 l ∈ L3 (33)

zlo4p5flo 4p5
= 11 p ∈ P3 (34)

�zn4l51 f − zlf �¶
∑

j∈S4l5

xlj1 l ∈ L1 f ∈ F 3 (35)

zn4j5fl ¾ xlj1 l ∈ L1 j ∈ S4l53 (36)

zn4l5fj ¾ xlj1 l ∈ L1 j ∈ S4l53 (37)

xlj ∈ 801191 l ∈ L1 j ∈ S4l53 (38)

zlf ∈ 801191 l ∈ L1 f ∈ F 3 (39)

sl ¾ 01 l ∈ L0 (40)

Mathematical formulation given above is a mixed integer
nonlinear optimization problem, which includes the nonlinear
relation between cruise time and speed in constraint (21)

and the nonlinear and discontinuous fuel burn function (F )
in the objective and in constraint (26). In the next section,
we show that the nonlinear constraints in the mathematical
model can be strengthened and reformulated using conic
quadratic inequalities.

5. Strengthened Conic Quadratic
Mixed Integer Model

One of the most critical aspects of disruption management
is to be able to recover fast from a disrupted schedule.
Nonlinear mixed integer optimization often requires very
long computation time to come up with optimal or near-
optimal solutions. In order to reduce the solution times, in
this section we show how to strengthen and reformulate the
preceding models. We take the conic quadratic reformulation
approach described in Aktürk et al. (2009) and generalized
in Günlük and Linderoth (2010). As demonstrated in §7,
the proposed reformulations can be solved in reasonable
time, within a few minutes for practical size problems.
For simplicity of presentation, we drop the indices of the
variables.

The fuel burn function

F 4v5=







dcr
l

(

c1v
2
+ c2v+

c3

v2
+

c4

v3

)

1 if z= 13

01 if z= 03

is discontinuous, and therefore its epigraph EF = 84v1 t5 ∈R2:
F 4v5¶ t9 is nonconvex. The next proposition describes
how to convexify EF . For more detail on this topic, we
refer the reader to Aktürk et al. (2009) and Günlük and
Linderoth (2010).

Proposition 1. The convex hull of EF can be expressed as

t ¾ dcr
l 4c1�1 + c2v+ c3�3 + c4�451 (41)

v2 ¶ �1z1 (42a)

z4 ¶ �3v
2z1 (42b)

z4 ¶ �4v
31 (42c)

in the constraint set. Furthermore, inequalities (42a)–(42c)
can be represented by conic quadratic inequalities.

Perspective of a convex function f 4v5 is zf 4v/z5 (Hiriart-
Urruty and Lemaréchal 2001). Since each of the nonlinear
terms v2, 1/v2, and 1/v3 in F 4v5 is a convex function,
epigraph of the perspective of each term can then be stated as

v2

z
¶ �11

z3

v2
¶ �31

z4

v3
¶ �41

respectively. Since z1 v¾ 0, they can be rewritten as in the
statement of the proposition.

Finally, observe that (42a) is a hyperbolic inequality, (42b)
can be restated as two hyperbolic inequalities

z2 ¶wv and w2 ¶ �3z1
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and (42c) can be restated as

z2 ¶wv and w2 ¶ �3v1

which can be written in conic quadratic inequality as
described in §3.

Equality (21) guarantees that if the cruise stage speed of
an aircraft on a flight is increased, then the cruise stage time
is decreased appropriately. Equality (21) defines a curve and
hence a nonconvex set of feasible points. Proposition 2 states
that this constraint can be relaxed to a convex inequality and
furthermore shows that the inequality can be restated as a
conic quadratic inequality.

Proposition 2. For every optimal solution to (20)–(40)
inequality,

dcrz¶ vt (44)

is satisfied as an equality. Moreover, inequality (44) can be
equivalently represented with the conic quadratic inequality.

If z= 1, then for any fixed value of t because the objective
function (7) is increasing in v for v¾ vo, v = dcr/t holds. In
the other hand, if z= 0, then v = 0 because of constraint (24),
and the equality holds again. Furthermore, using that z is a
0-1 decision variable and v, t¾ 0, inequality (44) can be
equivalently written as a hyperbolic inequality

dcrz2 ¶ vt1

which can be stated as a conic quadratic inequality as
described in §3.

6. Extensions to the Model
In this section, we present three extensions to the model
given in §4.2. The first extension is nonlinear delay costs
in §6.1. In §6.2 we present step delay function form of delay
cost. Finally, in §6.3 we present a matchup formulation.

6.1. Nonlinear Flight Delay Cost

In the models presented in §4, we use a linear penalty for the
arrival tardiness of each flight as is common in the airline
recovery literature. However, Hoffman and Ball (2000) in
their ground holding model suggest using a nonlinear delay
cost function would be more attractive since flight delay
costs tend to grow with time at a greater rate than linear
rate. Moreover, Hansen et al. (2001) perform a detailed
investigation of airline cost functions and also report that the
cost of a delay varies nonlinearly with the duration of the
delay. Therefore, we could easily replace the linear delay
cost in our objective function with a nonlinear one such that
the delay cost can be penalized using a convex increasing
function of tardiness t:

g4t5=wt� 1 (45)

where w > 0 and � > 1. Aktürk et al. (2009) describe how
to strengthen the epigraph of such a function and represent
it using conic quadratic inequalities.

Figure 6. Delay cost as a step function of delay.

Delay
cost

Delay (min)
0 b1 b2 b3 b4 b5

6.2. Step Function Form Delay Costs

An alternative way of modeling delay cost is representing it
as a step function. Figure 6 gives a typical situation where
cost increases as a function of delay in discrete steps. The
breakpoints could correspond to the cases where a flight
is considered “delayed” if it is b1 minutes later than its
scheduled time. For example, a tardiness of b2 minutes or
more could cause missing baggage connections, whereas
passengers could miss their connecting flights if tardiness
is above b3 minutes. Above a certain tardiness value, the
aircraft can miss its next flight.

Delay cost in the form of a step function can be incorpo-
rated into our multiple aircraft airline rescheduling model
in the following way. We define a decision variable tdm

l ,
the amount of arrival delay for flight l if mth segment is
active in delay cost function. We introduce a set of 0-1
decision variables yml that indicate if the amount of delay is
in the mth segment of the step function or not. If the mth
segment is active, then the delay amount variable tdm

l can
take positive values. Also, we define a decision variable tdl

for the amount of delay on flight l. Let wm
l be the unit delay

cost, and cml be the fixed cost if delay amount tdl is in the
mth interval. Assume that flight l has ml segments in its
delay function. Then for each l ∈L, we replace the delay
cost term in the objective of the model with the term below:

∑

l∈L

ml
∑

m=1

{

cml y
m
l +wm

l td
m
l

}

0

Furthermore, we add the following constraints

bm−1
l yml ¶ tdm

l ¶ bm
l y

m
l m= 11 0 0 0 1ml1 ∀ l ∈ L1 (46)

dl − rl +
∑

f∈F

4`lf + tlf + tnclf 5¶ tdl ∀ l ∈ L1 (47)

ml
∑

m=1

tdm
l = tdl1 ∀ l ∈ L1 (48)

yml ∈ 80119 m= 11 0 0 0 1ml1 ∀ l ∈ L1 (49)

Constraint (46) sets the bounds for tdm
l so that if yml = 1,

tdm
l takes a delay in the segment 6bm−1

l 1 bml 7. Constraint (47)
determines the length of delay if exists. Constraint (48)
relates the delay to the segments of the step function.
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6.3. Match-Up Model

Finally we consider the case where two swapped aircraft
are required to swap again later so that each aircraft comes
back to its original route at some point before the end of
scheduling horizon. We start with defining set L4f 5 that
is the set of flights assigned to aircraft f in the original
schedule. Then, we introduce a decision variable yf1f2

which
is 1, if swaps occur between the paths of aircraft f1 and f2

and 0 otherwise.
In order to model the multiple aircraft airline match-up

rescheduling, we
1. replace constraints (27) and (28) with the constraint:

dn4l5zn4l5f + `n4l5f + 4rk + `uk + ak541 − zn4l5f 5

¾ dkzkf + akzkf + `kf + tkf + tnckf zkf 1

l ∈ L1 f ∈ F 1 k ∈ 88l9∪ S4l593 (50)

2. remove the single swap constraint (29);
3. add the constraint that between two aircraft, either two

or no swaps occur:

∑

l∈L4f15

∑

j∈8L4f25∩S4l59

xlj = 2yf1f2
1 f11 f2 ∈ F 1 f1 6= f23 (51)

4. add the constraint so that an aircraft f1 cannot be
swapped with more than one aircraft:

∑

f1 6=f2

yf1f2
¶ 11 f1 ∈ F 3 (52)

5. and replace constraints (36) and (37) with the con-
straints below:

xlj ¶ 1 − zlfl + zn4l5fj 1 l ∈ L1 j ∈ S4l53 (53)

xlj ¶ 1 − zlfj + zn4l5fl 1 l ∈ L1 j ∈ S4l50 (54)

Constraint (53) guarantees that if there is a swap after
flights l and j , and flight l is assigned to fl, i.e., zlfl = 1,
then flight n4l5 must be assigned to aircraft fj . Similarly,
constraint (54) handles the case that l is assigned to fj .

In the next section, we present our computational results
on the proposed rescheduling model.

7. Computational Results
In our computational study, we test three different approaches
for repairing a disrupted airline schedule. The first one is the
delay propagation (DP), or push-back recovery, as discussed
in Schaefer and Nemhauser (2006), in which a delayed
flight causes delays on subsequent flights of the disrupted
aircraft and the only time saving option available is to
utilize the excess planned ground time. The second approach
is cruise speed control (CSC), in which cruise speed of
aircraft is adjusted in order to trade off fuel (and carbon
emission) costs and delay cost. Finally, the third approach
is swap and cruise speed control (S-CSC), which allows

swapping aircraft between flights in addition to adjusting
cruise speed. Our overall goal is to minimize the sum of
fuel, carbon emission, delay, and swap costs. Jet fuel and
carbon emission prices could be obtained from different
sources, but estimating the delay cost is more difficult.
Therefore, the delay cost is one of the experimental factors
in our computational study and is set to low as well as high
levels in the experiments. Furthermore, we have studied
linear, nonlinear, and stepwise delay costs separately. Our
computational studies have shown that the higher the impact
of the delay cost, the more valuable speed control is as a
recovery strategy.

We test all three approaches on two different flight
schedules extracted from the database “Airline On-Time
Performance Data,” provided by the Bureau of Transporta-
tion Statistics of the U.S. Department of Transportation
(BTS 2010). To construct the first schedule, called the ORD
schedule, from the database we queried the planned departure
and arrival times of all American Airlines (AA) flights for
the date of 01/27/2010. Then we filtered the schedules of
aircraft that first departed from Chicago O’Hare International
Airport (ORD) and revisited ORD at least once on the
same day. This allowed us to study the schedules of aircraft
for which ORD may be considered as a base airport. The
schedule ORD has 114 flights operated by 31 different aircraft.
The second schedule, called the DFW schedule, is constructed
the same way for Dallas-Fort Worth International Airport.
DFW has 207 flights and 60 aircraft, almost double the size
of ORD schedule in terms of the number of flights and the
number of aircraft. We give the details of ORD and DFW
schedules in the e-companion to this paper. ORD and DFW
are two highly congested airports in the United States with a
large number of flights.

For the computational study, we adopt the fuel burn
model of BADA (EUROCONTROL 2009) summarized
in 2.1.1. We consider six different types of aircraft and
randomly assign each aircraft to an aircraft type among
the alternatives given in Table 6. The fuel burn related
parameters are from operations performance files provided by
BADA (EUROCONTROL 2012). Assuming that an aircraft’s
mass is fixed at an average value and a fixed altitude through
the cruise stage, we have generated fuel burn parameters
(ci1 i = 1121314) for each aircraft type. We assume that
gravitational acceleration is 9.80665, atmospheric density
at cruise stage altitude is 0.38 kilograms per cubic meter,
and there are 0 degrees of block angle at cruise stage. For
each aircraft type, we list fuel burn related parameters,
corresponding MRC speed levels, and number of seats
in Table 6.

For ORD and DFW schedules retrieved from the BTS
database, for each flight, we have planned departure, planned
arrival, and planned flight times. As an example, Table 7
gives the schedule of aircraft N530AA on 01/27/2010 by
local time in ORD airport. In our experiments we assume
that all noncruise stages of a flight, such as taxiing, take-off,
climb, and descent, take 30 minutes in total. Flight 398 given
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Table 6. Parameters for six aircraft types.

Aircraft types

Parameters MD83 B727 228 B737 500 B767 200ER A320 212 A320 111

Mass (m, kgs) 61,200 74,000 50,000 140,000 64,000 62,000
Reference wing area (S, m2) 118 157.9 105.4 283.3 122.6 122.4
Drag coefficient (CD01CR) 0.021154 0.018 0.018 0.014 0.024 0.024
Drag coefficient (CD21CR) 0.046897 0.06 0.055 0.049 0.0375 0.0375
1st thrust specific fuel consumption 0.74627 0.53178 0.46 0.338 0.94 0.94

coefficient (Cf1
, kg/min · kN)

2nd thrust specific fuel consumption 638.59 276.72 300 192 100,000 50,000
coefficient (Cf2

, knots)
Cruise fuel flow factor (Cfcr

) 0.95057 0.954 1.079 0.9876 1.06 1.095
c1 0.002439115 0.004583469 0.002761029 0.006065562 0.00002579 0.00005319
c2 0.093455678 0.076100255 0.049698524 0.069875269 0.154734277 0.159582672
c3 50.21840018 115.8540941 65.54794936 178.995095 0.37911718 0.736282025
c4 1,924.13809 1,923.548696 1,179.863088 2,062.023495 2,274.703078 2,208.846074
MRC (km/min) 14.46 14.46 14.32 14.66 14.48 14.25
Number of seats 148 134 122 181 180 172

Table 7. Flight schedule of N530AA on 01/27/2010.

Planned Planned Planned
Departure Destination departure flight arrival

Flight no airport airport time time time

398 ORD LGA 6:15 a.m. 135 8:30 a.m.
319 LGA ORD 9:25 a.m. 170 12:15 p.m.

2329 ORD DFW 1:35 p.m. 155 4:10 p.m.
2364 DFW ORD 5:00 p.m. 150 7:30 p.m.

in Table 7 is planned to depart from ORD at 6:15 a.m. and
arrive at LGA at 8:30 a.m. (by local time in ORD). Planned
flight time for flight 398 is 135 minutes, 105 minutes of
which is assumed to be the cruise time in our experiments.

Considering ORD and DFW schedules, we generate random
departure delays (in minutes) in the initial schedules. We
apply a departure delay to the second flight of randomly
selected aircraft. We randomly generate lengths of delays and
delay costs. In our computational study we assume that in the
original schedule each aircraft cruises at 1.02 × MRC speed
and we calculate the fuel consumption and carbon emission
occurred in the original schedule accordingly. As stated in
Delgado and Prats (2009), the cruise speed can be varied
from maximum range cruise speed by about 10%. Table 8
lists the values of the parameters used in the experiments.
In addition to those parameters given in the table, we
calculate the location-dependent deadhead cost for the crews
based on the flight times and fuel costs between the airports.
We also assume that in the original schedule all available
seats are utilized for all flights.

Given a schedule and delayed aircraft, we look for possible
swaps between aircraft. We assume that a swap between two
aircraft f1 and f2 is feasible if f1 is planned to arrive at an
airport at some time point T and f2 is planned to arrive to
the same airport in the time interval 6T − 601 T + 1807 in
the original schedule.

We performed all experiments on a 64-bit Windows 7 com-
puter with 8 GB memory and Intel Core i7-3770 3.40 GHz

Table 8. Experimental parameters.

Parameter Value

Number of delayed aircraft (Nd) 1; 2
Length of departure delays (Ld) Low: U6451757;

high: U69011207
Delay cost level (wl) Low: U6101307;

high: U65011007 ($/min)
Spilled passenger cost (spl) U65011007 ($/pax)
Maximum allowable 180 min

departure delay (`ul )
Upper bound on 101 × volf

cruise speed (vulf )
Lower bound on volf

cruise speed (vllf )
Turnaround time (al) 30 min or 45 min,

depending on arrival airport
Jet fuel price (pfuel) 1 ($/kg)
Carbon emission price (pCO2

) 20 ($/ton)

CPU. For each experimental setting and schedule, we gener-
ated six replications. We calculated delay costs for the delay
propagation, solved the proposed nonlinear model with only
cruise speed decisions (CSC), and also solved the same model
with swapping as well as cruise speed decisions (S-CSC).
We solved conic quadratic mixed integer reformulations
described in §5 using IBM ILOG CPLEX 12.5.

Table 9 compares the performance of CSC and S-CSC with
DP and gives the average CPU time for different experimental
settings. The table summarizes the results for 96 problems
solved by CSC and S-CSC approaches. costimp% and
delayimp% give the cost ($) and delay (min) improvement
achieved compared to DP cost, respectively. For ORD and
DFW schedules, the average improvement in rescheduling
cost achieved by CSC is 27.1% and 18.0%, respectively. The
average reduction in arrival delay (in minutes) for ORD and
DFW is 33.2% and 22.6%, respectively. The table shows when
the delay cost wl is higher, achievable cost improvement by
CSC is higher as expected since in this case speeding up
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Table 9. Rescheduling cost improvement and CPU time results.

CSC S-CSC

Schedule wl Ld Nd costimp% delayimp% CPU costimp% delayimp% CPU

ORD Low Low 1 3503 4708 0009 4009 5001 2901
2 2304 3403 0007 2501 3502 4506

High 1 1808 2604 0008 2900 3408 3001
2 1506 2201 0008 2204 2607 5504

High Low 1 4309 4708 0009 4708 5100 2507
2 3307 3703 0008 3406 3708 4705

High 1 2404 2700 0009 4002 5108 3604
2 2109 2307 0008 2908 3404 4901

DFW Low Low 1 1408 2309 0015 1705 3406 16709
2 2305 3107 0017 2408 3805 24105

High 1 803 1400 0015 1809 2609 16203
2 1306 1808 0014 2202 3205 24901

High Low 1 2200 2405 0016 3101 3504 12803
2 3009 3307 0015 3508 4007 23708

High 1 1205 1403 0016 2606 2909 13300
2 1801 2000 0015 3103 4001 24804

aircraft achieves more reduction in the delay cost. Table 9
also illustrates that for a given disruption(s) the CPU time
requirement of calculating the optimal cruise speed is very
small. For example, the average CPU time spent to solve
the CSC formulation is less than 0.2 seconds for the ORD
schedule. It is important to note that we limit the increase
of a cruise speed by at most 10%, although it may be
increased even further with the new engines. If we relax this
constraint, the benefit of cruise speed control would be even
higher.

In Table 9, under costimp% and delayimp% columns we
give the cost and delay improvements achieved by S-CSC
over DP method. The results show that considering swaps
can significantly improve rescheduling costs compared to
CSC approach. The average cost improvement achieved by
S-CSC is 33.7% and 26.0%, respectively, for ORD and DFW
schedules. For ORD and DFW the average delay improvement
achieved by S-CSC is 40.2% and 34.8%, respectively. The
results indicate that we are more likely to find improving
swaps when the average departure delay (Ld) is longer.
This observation may suggest that it is better to repair
short delays by speed adjustments and consider aircraft
swaps when delays are longer. In the experiments, maximum

Table 10. Detailed cost figures for a selected set of instances.

Factors DP CSC S-CSC

Prob Sch wl L Nd Rep Delay Fuel + Carbon Delay Total Fuel + Carbon Delay #swap Deadhead Spilling Total

1 ORD 1 1 1 1 151090 197 111974 121171 147 71359 1 11829 51 91386
2 ORD 0 0 1 5 31300 361 21019 21381 −21305 11609 1 11343 636 11284
3 ORD 1 1 1 6 191360 520 121579 131099 11250 71793 1 0 21856 111899
4 ORD 0 0 2 6 21830 451 11354 11805 407 11292 2 0 0 11699
5 ORD 0 1 2 6 61865 805 31874 41679 −21360 41007 2 11111 11416 41173
6 ORD 1 1 2 1 221030 353 181350 181703 605 141263 1 11086 0 151953

improvement achieved by CSC and S-CSC approaches are
58.5% and 70.1%, respectively.

Moreover, the average CPU time requirement for solving
the S-CSC model for ORD and DFW experiments is 40 and
196 CPU seconds, respectively. As expected, when there are
two disruptions, the number of possible swaps considered in
rescheduling and hence the CPU time to solve the problem
increases.

In the e-companion to this paper, we give the detailed
results obtained for all instances and the detailed data for
each run can be obtained from the authors. Table 10 presents
detailed cost results for a set of selected instances for
different factor combinations used in our computational
study. The DP column gives the delay cost incurred as a
result of right-shifting. Under the CSC column, we give
additional fuel and carbon cost incurred because of speeding
up flights and delay costs. S-CSC gives additional fuel and
carbon costs, delay costs, the number of aircraft swaps
made, and swap related costs such as deadheading cost and
spilling cost.

In problem 1, we observe that CSC approach reduces the
delay costs by incurring additional fuel and carbon costs,
which in turn reduces the total cost caused by the disruption.
For the same instance, S-CSC finds an aircraft swap that
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could reduce the fuel, carbon, and delay costs at the same
time, albeit with additional deadhead and spill costs.

Technological advancements in the airline industry have
significantly reduced aircraft engine fuel consumption and
emissions. As discussed in Marais and Waitz (2009), fuel
consumption per passenger kilometer has decreased by 70%
over the past four decades. Therefore, aircraft recovery
algorithms should take into account the engine fuel efficiency
while dealing with a disruption. It might be necessary to
swap two aircraft just to take advantage of fuel efficiency
as we observed in our computational experiments. For
example in problem 2, we observe that compared to CSC,
S-CSC has reduced both fuel and delay costs by performing
an aircraft swap. Despite the deadhead cost incurred, the
overall disruption cost is reduced. In problem 3, swapping
aircraft results in spilled passenger cost but nevertheless
decreases overall disruption cost for the assumed parameter
values. In problem 3, compared to CSC, fuel + carbon costs
are increased, but delay costs are decreased by S-CSC.
In problem 4, aircraft of the same type were swapped, which
resulted in zero spilling cost. Swapped aircraft pairs have the
same final destination by the end of the recovery horizon, so
no deadhead cost was incurred by the swaps. In problem 5,
S-CSC finds two swaps to reduce disruption costs. In prob-
lem 6, a single swap found by S-CSC requires deadhead cost
but still achieves a better overall solution compared to CSC.
Despite an increase in fuel costs and incurred deadhead cost,
the overall disruption cost is decreased by 14.7%.

Bratu and Barnhart (2006) develop an airline control
center simulator to evaluate the potential impact of decisions
generated by their airline recovery models. They state that
recovery solutions should be generated in fewer than three
minutes; otherwise, the recovery solution can become infeasi-
ble, and multiple scenario analysis cannot be conducted. The
computational experiments show that this speed requirement
is met to allow the proposed nonlinear optimization model to
be used by operations controllers for disruption management
in real time instead of relying on heuristic approaches. More-
over, solving only the proposed CSC model, which takes
less than 0.17 seconds in all instances, may be sufficient to
deal with short disruptions.

Table 11. Improvement and CPU time results for nonlinear delay costs (ORD).

CSC S-CSC

Schedule wl Ld Nd costimp% delayimp% CPU costimp% delayimp% CPU

ORD Low Low 1 52.5 47.7 0.25 54.8 50.9 9707
2 41.8 37.0 0.26 42.4 37.6 20001

High 1 33.8 26.9 0.25 50.1 51.7 10900
2 30.0 23.7 0.28 39.3 37.9 20309

High Low 1 53.8 47.8 0.25 57.0 55.2 11008
2 43.0 37.2 0.28 45.9 42.0 14509

High 1 34.7 27.0 0.31 53.7 53.0 10205
2 30.3 23.7 0.29 42.9 40.7 13903

7.1. Nonlinear Delay Costs

As discussed earlier, almost all of the existing literature
on aircraft recovery assume a linear delay cost. However,
Hoffman and Ball (2000) and Hansen et al. (2001) report that
the cost of a delay varies nonlinearly with the duration of the
delay in practice since the delay propagates throughout the
network. According to Schumer and Maloney (2008), 33.7%
of delays during 2007 were attributed to late-arriving aircraft.

In order to test the use of the nonlinear delay costs, we
replace the linear delay cost term in our objective function
with delay costs of the form wlt

�
l as discussed in §5. Table 11

summarizes the results for nonlinear delay cost with � = 105
for all flights single disruptions.

With nonlinear delay costs, CSC and S-CSC models are
still solved in reasonable CPU times. As expected for given
experimental settings in Table 11, cost reductions achieved
by CSC and S-CSC are significantly higher than the ones
achieved for linear delay costs. Furthermore, the value of
speed control becomes more evident for the nonlinear delay
cost as a recovery strategy. To the best of our knowledge,
this is the first study that considers a nonlinear delay cost
for aircraft recovery.

7.2. Step Function Delay Costs

In order test the CSC and S-CSC approaches with a step
delay cost function, we consider five delay intervals presented
in Figure 6, (0–15, 15–30, 30–60, 60–120, 120-). For
each flight l and each delay time interval m, we randomly
generated cml and wm

l values. As a delay is higher, clm
and wm

l are higher. We give the computational results in
Table 12. The results indicate that compared to the linear
delay cost case, solving the model for S-CSC with step cost
functions require longer CPU times, but the instances for
the schedule ORD could still be solved in 120 CPU seconds
on average. Maximum CPU times observed for CSC and
S-CSC approaches were 4.2 and 202.8 seconds on average,
respectively.

7.3. Match-Up with Swaps

We test the match-up model for six replications resulting in
48 instances. Instead of one-day schedules used in previous
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Table 12. Improvement and CPU time results for step function delay costs (ORD).

CSC S-CSC

Schedule wl Ld Nd costimp% delayimp% CPU costimp% delayimp% CPU

ORD Low Low 1 38.8 46.8 3.4 44.2 49.8 9100
2 26.8 33.1 2.9 28.4 33.8 10404

High 1 22.9 26.5 2.6 34.2 39.0 10501
2 18.1 22.1 4.2 26.0 29.6 11204

High Low 1 46.3 47.8 2.1 50.2 51.0 9707
2 36.3 37.3 2.1 37.3 37.7 15001

High 1 26.0 27.0 2.4 43.7 51.8 9405
2 23.3 23.7 2.9 32.9 34.4 20208

runs, we use two-day schedules to allow more swap oppor-
tunities and to satisfy the match-up requirement. With the
CSC approach we observe a 32% average improvement in
disruption costs within 0.17 CPU seconds on the average.
We achieve optimal solutions for 31 of the 48 instances
within a time limit of 3,600 CPU seconds. For nine of these
instances, the optimal solutions have improved swaps and
their average solve time is 451 seconds. The average cost
improvement for those instances is 36%. For the remaining
22 instances, which are solved to optimality, there is no
improving swap satisfying the feasibility and/or optimality
conditions. Average solution time for them is 255 CPU
seconds. For the remaining 17 instances that could not be
solved to optimality within 3,600 seconds, only one has an
improved swap. These results indicate that the larger S-CSC
model with match-up extension takes longer to solve.

8. Conclusions
There is a critical trade-off between the fuel consumption
(and its adverse impact on surface air quality) and delay
minimization. Although flight time controllability is a very
popular local recovery strategy in practice to deal with the
disruptions, its benefit has been limited because it does not
consider networkwide integrated effects. To the best of our
knowledge, this is the first study in which the cruise speed
is included as a decision variable in an airline recovery
optimization model along with the environmental constraints
and cost coefficients. Flight time controllability, nonlinear
delay, fuel burn, and CO2 emission cost functions as well as
binary aircraft swapping decisions complicate the aircraft
recovery significantly. We utilize the recent advances in conic
mixed integer programming and propose a strengthened
conic formulation to mitigate the computational difficulty.
Although optimization techniques are used quite extensively
in the airline industry, this is the first implementation of a
conic quadratic optimization approach to solve a critical
aircraft recovery problem in an optimal manner. A natural
extension of this study would be developing a robust airline
schedule so that the disruptions can be managed in a less
costly manner.
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