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Abstract—Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film
transistors (TFTs) with bottom-gate bottom-contact device ar-
chitecture are studied in this paper. The impact of the IGZO
film thickness on the performance of TFTs is investigated. The
threshold voltage, field-effect mobility, on and off drain current,
and subthreshold swing are strongly affected by the thickness of
the IGZO film. With the increase in film thickness, the threshold
voltage shifted from positive to negative, which is related to the
depletion layer formed by the oxygen absorbed on the surface.
The field-effect mobility is affected by the film surface roughness,
which is thickness dependent. Our results show that there is an
optimum IGZO thickness, which ensures the best TFT electrical
performance. The best result is from a 55-nm-thick IGZO TFT,
which showed a field-effect mobility in the saturation region
of 1.41 em?/V - s, a threshold voltage of 1 V, a drain current
on/off ratio of approximately 4.3 x 107, a subthreshold swing of
384 mV/dec, and an off-current level lower than 1 pA.

Index Terms—Film thickness, In-Ga-Zn oxide (IGZO), inkjet
printing, thin-film transistors (TFTs).

I. INTRODUCTION

NKJET-PRINTED THIN-FILM TRANSISTOR (TFT)

technology has received great attention as a low-cost al-
ternative to conventional silicon-based technologies [1]. This
technology is expected to result in many benefits. First, it is
a low-waste and maskless process. Deposition and patterning
are accomplished by ink jetting, reducing material usage and
process complexity [2]. In addition, inkjet printing is amenable
to roll-to-roll manufacturing fabrication on flexible substrate in
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the ambient condition [3]. This renders more process flexibility,
high overall thoughput, and ultralow cost. One of the critical
materials for printed TFTs is a stable and jettable semiconduc-
tor solution. Research on solution-processable semiconductor
materials is focused on silicon and organics [4]-[7].

Metal-oxide semiconductor is advantageous in terms of
mobility and stability, and some groups have done plenty of
work in this area, especially by inkjet printing method [8]-
[10]. In-Ga-Zn oxide (IGZO) is a good alternative channel
layer material for TFTs, compared to conventional a-Si and
poly-Si [11]-[14]. IGZO is transparent in the visible region
due to the large band gap and has a high mobility, even for
an amorphous structure due to s-electron conduction [11].
High mobility is essential for current-driving devices such
as organic light-emitting diodes and for building integrated
electronics/drivers for system-on-glass. Up to now, most IGZO
TFTs are fabricated by magnetron sputtering [13]-[17] and
pulsed laser deposition [11]. To reduce the cost, IGZO TFTs
have been fabricated by spin-coating [18]-[20]. Kim et al.
reported staggered IGZO TFTs (bottom-gate top-contact) by
inkjet printing [21]. However, the mobility was 0.03 cm?/V - s,
which was lower than that of the spin-coated IGZO TFTs. It
is known that, compared with bottom-gate top-contact, bottom-
gate bottom-contact is more feasible to be used in the inkjet-
printed TFT technology process. Therefore, in this paper, we
applied inkjet printing method to fabricate IGZO TFTs with
bottom-gate bottom-contact architectures for the first time.
Here, we focus on investigating the impact of channel layer
thickness on the electrical performance of IGZO TFT prepared
by inkjet printing technology.

II. EXPERIMENTAL DETAILS

The IGZO ink was prepared by dissolving 0.1 M of zinc
acetate dehydrate [Zn(OAc); - 2H50], 0.1-M indium chloride,
and 0.0025-M gallium chloride (the atom ratio of Ga:In:Zn =
25:100:100) in 2-methoxyethanol. A 0.2-M monoethanolamine
(MEA) was then added in the precursor solution as a sol-gel
stabilizer. After thoroughly mixing all components, the solution
was stirred at 50 °C for 2 h and then aged for 24 h. A heavily
doped pT-Si wafer (carrier concentration ~10' cm—2) was
employed as the bottom gate of the TFT. A 150-nm-thick SiO»
film was thermally grown on top of the silicon wafer, which was
used as the gate dielectric layer. A 150-nm-thick ITO film was
deposited by dc sputtering as the source and drain electrodes

0018-9383/$26.00 © 2010 IEEE
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Fig. 1. (a) Inkjet-printed IGZO dots, (b) single line, and (c¢) IGZO TFT with
bottom-gate bottom-contact architecture. Insets in (a) are the printed single dot
and its 2-D profile. In addition, inset in (b) is the 2-D profile of the printed
single line.

were patterned on the SiOy surface by liftoff. In most cases,
before IGZO printing, the silicon substrate with patterned ITO
was cleaned by acetone, isopropanol, and de-ionized water
sequentially, followed by nitrogen blow dry. The IGZO ink
was deposited by a DMP 2831 inkjet printer. This process was
repeated several times to obtain the desired film thickness on
the prepared substrate and heated at 300 °C in the air by a
hotplate for 10 min. Postannealing was performed at 500 °C
for 1 h in air by a common laboratory furnace to remove the
residual chemicals and improve the quality of the IGZO film.
The crystal structure of the sample was characterized by
X-ray diffraction (XRD) using the copper K, line under an
accelerating voltage of 40 kV. The thermal behavior of the
IGZO precursor solution was studied by using a thermogravi-
metric analyzer, which is operated at temperature ranging from
room temperature to 800 °C. The thickness of the IGZO film
was carried out by a surface profiler. The film morphology
was characterized by atomic force microscopy (AFM). The
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Fig. 2. (a) TGA curves of the IGZO ink. The arrow indicates the temperature
that completes the conversion of the IGZO thin film. (b) XRD pattern of the
IGZO thin film on a Si substrate annealed at 500 °C in the air for 1 h.

transistor performance of the IGZO TFT was measured with
an HP 4156A semiconductor parameter analyzer. The device
fabrication and characterization were all conducted under ambi-
ent conditions without taking precautionary measures to avoid
ambient lights, moisture, and oxygen.

III. RESULTS AND DISCUSSIONS

The IGZO inks dispensed from the inkjet head had a diameter
of 6-8 pum and a volume of 1 pl. To get a better printed pattern,
the ink flying speed between the nozzle and the substrate was
precisely controlled by adjusting the firing voltage. The printed
IGZO dots and single line are shown in Fig. 1(a) and (b),
respectively. The dots were printed with a spacing of 100 um
(between the centers of any two adjacent drops). A donut ring
shape formed by a single drop can be seen in the inset of
Fig. 1(a). The line was made up of printed dots with 5-um
drop spacing. We can see that the printed IGZO film is uniform
at the center. The thickness of the film can be easily adjusted
by controlling the inkjetting frequency and the printing times.
Typical optical images of printed IGZO TFTs with bottom-
gate bottom-contact device architectures are shown in Fig. 1(c).
As we can see, the IGZO ink was only dropped between the
source—drain electrodes without wasting ink, i.e., a drop-on-
demand process [22].

Thermogravimetric analysis (TGA) was performed in at-
mosphere with a heating rate of 5 °C/min to determine the
postannealing temperature for IGZO thin films. As shown in
Fig. 2(a), the conversion of the oxide film was completed
around 420 °C. Most weight loss below 420 °C was attributed
to the evaporation of the solvent, decomposition, hydrolysis,
and dehydroxylation from the precursors [10], [18]. There-
fore, a 500-°C annealing temperature is high enough for the
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Fig. 3. AFM images of surface morphology of the inkjet-printed IGZO film
with the thickness of (a) 23 nm, (b) 41 nm, (c¢) 55 nm, (d) 78 nm, (e¢) 103 nm,
and (f) 125 nm. The size of all images is 1 pm X 1 pm.

TABLE 1
RMS ROUGHNESS OF THE IGZO FILMS WITH DIFFERENT THICKNESSES

Thickness (nm) RMS roughness (nm)

23 0.189
41 0.270
55 0.320
78 0.333
103 0.322
125 0.337

formation of IGZO thin films. Fig. 2(b) shows the XRD pattern
of IGZO films. We can see that the film is amorphous. It was
known that the amorphous film has the advantage of large area
uniformity, which is crucial for production. Moreover, amor-
phous films have other added advantages, including smooth sur-
face, and low interface state density and low electronic-defect
domains [23].

The morphology of the IGZO thin films with different
thicknesses is compared in Fig. 3(a)—(f), and their root mean
square (RMS) roughness is summarized in Table I. It can
be seen that, with the increase in IGZO thickness, the RMS
roughness monotonically increases from 0.189 to 0.33 nm
for a film thickness of 23, 41, and 55 nm. The film was
deposited by repeating a few cycles of printing and annealing
to obtain the desired film thickness (the thickness is controlled
by the number of cycles); therefore, the RMS roughness in-
creases with the increase in thickness. For films thicker than
55 nm, the RMS roughness does not significantly change. The
largest RMS roughness of our inkjet-printed IGZO film is only
0.337 nm. Thus, the inkjet-printed IGZO surface is very smooth
and uniform due to the amorphous nature of the film, which is
suitable for TFT application.
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Fig. 4. Device performance for inkjet-printed TFTs with different IGZO film
thicknesses. (a) Transfer characteristics and (b) the square root of Ips—Vig g at
Vps = 20V for TFTs with different IGZO film thicknesses.

Using the inkjet-printed IGZO film annealed at 500 °C in the
air, we fabricated bottom-gate bottom-contact structured IGZO
TFTs with W/L = 200 x¢m/200 pm and without passivation,
and their device performance is shown in Fig. 4. Fig. 4(a)
summarizes the transfer characteristics at Vpg =20 V for
TFTs with different IGZO film thicknesses. Fig. 4(b) is the
square root of Ips—Vigs to show the threshold voltage and
the field-effect mobility in the saturation region. Fig. 5(a)—(f)
presents their output characteristics. It can be seen that the
thickness of the channel layer has a strong impact on the TFT
performance [24]. The best performance was obtained for the
TFT with 55-nm-thick IGZO thin film. It was operated in
n-channel enhancement mode with a field-effect mobility in
the saturation region of 1.41 cm?/V - s, a threshold voltage of
1 V, a drain current on/off ratio of approximately 4.3 x 107,
a subthreshold swing of 384 mV/dec, and an off-current level
of lower than 1 pA. Compared to the device performance
of the previously reported inkjet-printed IGZO TFTs (with a
field-effect mobility of 0.03 cm?/V - s and on/off-current ratio
~10%) [21], our result is significantly improved. The mobility
of inkjet-printed IGZO TFT (1.41 cm?/V - ) is also slightly
better than that of the spin-coating one (0.96 cm?/V - s) [18].

The device performance of IGZO TFTs with different thick-
nesses of channel layer is summarized in Table II. A general
observation is that, with the increase in the thickness of the
IGZO film, the field-effect mobility is first increased and then
slightly decreased, threshold voltage is shifted from positive
to negative, off-drain current is increased, on-drain current is
first increased and then saturated, and subthreshold swing is
fluctuated in a small range for thin films and then increased for
the thicker ones; these observed phenomena are in agreement
with the case of ZnO TFTs [25]-[28]. Lower carrier mobility
was commonly obtained for thinner IGZO films. The reason is
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Fig. 5. Output characteristics for inkjet-printed TFTs with different IGZO film thicknesses of (a) 23 nm, (b) 41 nm, (c) 55 nm, (d) 78 nm, (e) 103 nm, and
(f) 125 nm.

mainly because, as the carrier transport layer is farther from
the surface of the thicker film [29], the influence of surface
roughness on the carrier mobility is weaker in the thicker film,
compared with the thinner film. Therefore, higher mobility was
obtained in the thicker film, as we can see from the Table II.
However, with the increase in film thickness thicker than 55 nm,
the field-effect mobility decreased from 1.41 to 1.16 cm?/V - s.
The reason is due to an increased carrier scattering associated
with increased trap density as thickness is increased. The same
trend was also found in solution-processed ZnO [25]. It is
generally accepted that, for a given TFT geometry, it is possible
to define an optimum semiconductor film thickness ensuring
maximum TFT performance [24]. For example, the highest
mobility for the a-Si:H TFT with a channel length of 100 pum
was obtained by a 100-150-nm-thick a-Si:H semiconductor
layer [24]. In our device, the highest mobility device is obtained
by 50-80-nm-thick IGZO film. The operation mode changes
from enhancement mode (positive threshold voltage) to de-
pletion mode (negative threshold voltage) with the increase
in the thickness of the IGZO film. In order to explain this
phenomenon, we need to consider the influence of the oxygen
on the surface of the IGZO film [21], [30]. As well known,
surface-absorbed oxygen attracts electrons in IGZO films and
forms a depletion layer below the surface [31], [32]. The width
of the depletion layer can be estimated by

1/2
W— <2€IGZOS05) o

eN D
where ¢, is the surface barrier potential, e is the electronic
charge, Np is the doping concentration, and €1gzo is the di-
electric constant of IGZO [33]. By assuming similar parameters
toZn0O,i.e., Np = 1017/cm3, erazo = 8.66,and ps = 0.3 eV,
we obtain the width of the depletion layer to be W = 54 nm
[33]. When the film thickness is less than W, the threshold
voltage is positive because the thinner IGZO TFT is completely
depleted under zero gate bias. While the thickness is larger
than W, the threshold voltage is negative because the TFT is
partially depleted under zero gate bias. This result indicates that

the surface depletion has a strong impact on the performance of
the IGZO TFTs for ultrathin films. In addition, it also indicates
that the threshold voltage can be adjusted to zero when the
film thickness is in the range of 50-80 nm, which is in good
agreement with our result (1 and —0.5 V for 55- and 78-nm
IGZO films, respectively). This explains why the inkjet-printed
IGZO TFT works in enhancement mode when the thickness
is less than 50 nm, whereas it works in depletion mode when
the film thickness is thicker than 80 nm. Due to the higher
resistivity of the thinner film, the off current is smaller than that
of the thicker film.

With the increase in film thickness, the subthreshold swing
fluctuates within a small range for IGZO films thinner than
55 nm and then increases for the film thicker than 55 nm.
The turning point of 55 nm coincides with the depletion layer
thickness obtained from (1). For films thinner than 55 nm, the
channel is fully depleted, leading to a small subthreshold swing.
It is indeed the film thickness that determines the subthreshold
swing change.

From the value of the subthreshold swing, the sheet trap
density N (with a unit of cm~2) can be estimated by

Al

G
q

2

where S is the subthreshold swing, k is the Boltzmann’s con-
stant, 7" is the temperature, and C; is the unit gate capacitance
[34], [35]. From the equation, we can see that the subthreshold
swing is in proportion to the trap density. The degradation of the
subthreshold swing with the increase in the film for the thicker
film devices is due to a combination of effects: an increase
in off drain current and increase in sheet trap density Np
[36]. A detailed mechanism of the degradation of subthreshold
swing induced by the increased off drain current can be found
from [36]. With the increase in semiconductor thickness, the
distance between the charge centroid and IGZO/Si0Os interface
increases; then, a semiconductor capacitance is inserted in
series with the gate insulator capacitance, reducing the effec-
tive capacitance and leading to an increase in subthreshold
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TABLE 1I
COMPARISON OF THE VARIOUS PARAMETERS FOR THE INK-JET PRINTED TFTS WITH DIFFERENT IGZO FILM THICKNESSES

Thickness Saturation mobility Threshold Ton/lofr Subthreshold swing Trap density

(nm) (ecm?/V s) voltage (V) (V/dec) (10'%/cm?)

23 0.40 20 4.0E6 0.434 0.901

41 0.82 3.5 24E7 0.451 0.943

55 1.41 1.0 43E7 0.384 0.781

78 1.36 -0.5 1.8E7 0.584 1.260
103 1.16 -3.5 4.6E6 0.909 2.189
125 1.19 -6.5 9.6E6 1.38 3.181

swing [36]. Subsequently, we consider the increase in sheet
trap density. Suppose that the channel layer trap density n; is
constant across the entire film. Then, Nz is proportional to
IGZO film thickness, which leads to an increase in N7 for a
thicker film [36]. More traps induce more free carriers, resulting
in the subthreshold swing degradation in depletion-mode TFTs,
which has been observed in ZTO TFTs [37].

IV. CONCLUSION

In conclusion, we have fabricated IGZO TFTs with bottom-
gate bottom-contact device architectures by inkjet printing
method. The influence of the IGZO film thickness (23—125 nm)
on the performance of TFTs has been discussed in detail. The
threshold voltage, mobility, on/off drain current, and subthresh-
old swing can be modified by varying IGZO film thickness.
The printed IGZO TFTs with an optimal 55-nm thickness
annealed at 500 °C in the air showed a field-effect mobility in
the saturation region of 1.41 cm?/V - s, a threshold voltage of
1 V, a drain current on/off ratio of approximately 4.3 x 107,
a subthreshold swing of 384 mV/dec, and an off-current level
lower than 1 pA. The performance of the inkjet-printed IGZO
can be compared with that of spin-coated IGZO TFTs. Our
results demonstrate the possibility of fabricating IGZO TFTs
by inkjet printing technology, which is amenable to roll-to-roll
manufacturing process in the ambient condition with low cost.
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