
Low-threshold lasing eigenmodes of an infinite
periodic chain of quantum wires

Volodymyr O. Byelobrov,1,* Jiri Ctyroky,2 Trevor M. Benson,3 Ronan Sauleau,4

Ayhan Altintas,5 and Alexander I. Nosich6,1

1Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine
2Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic v.v.i., 18351 Prague 8, Czech Republic

3George Green Institute for Electromagnetics Research, University of Nottingham, Nottingham, NG7 2RD, UK
4IETR, Universite de Rennes 1, Rennes Cedex 35042, France

5Bilkent University, 06800 Ankara, Turkey
6Universite Europeenne de Bretagne, c/o Universite de Rennes 1, Rennes Cedex 35042, France

*Corresponding author: volodia.byelobrov@gmail.com

Received January 26, 2010; revised June 25, 2010; accepted July 14, 2010;
posted September 27, 2010 (Doc. ID 123217); published October 26, 2010

We study the lasing eigenvalue problems for a periodic open optical resonator made of an infinite grating of circular
dielectric cylinders standing in free space, in the E- andH-polarizationmodes. If possessing a “negative-absorption”
refractive index, such cylinders model a chain of quantum wires made of the gain material under pumping. The
initial-guess values for the lasing frequencies are provided by the plane-wave scattering problems.We demonstrate a
new effect: the existence of specific grating eigenmodes that have a low threshold of lasing even if the wires are
optically very thin. © 2010 Optical Society of America
OCIS codes: 140.3945, 140.5960, 290.5825.

Today’s technologies enable manufacturing of advanced
light-emitting devices based on single or multiple quan-
tum wires embedded in epitaxially grown semiconductor
microcavities. The advantages of quantum wires with
respect to quantum wells include their better thermal sta-
bility, lower chemical reactivity, and higher mechanical
strength. We consider an infinite periodic chain of paral-
lel circular quantum wires in free space as a simple mod-
el of a microcavity with a periodically structured active
region. Although there are numerous publications study-
ing transmission and reflection of plane waves by peri-
odic grids of passive dielectric and metallic wires (for
instance, see [1–3]), it looks like the associated eigenpro-
blems have so far escaped a detailed analysis. We study
such eigenproblems, for two alternative polarizations, in
the modified formulation adapted to characterize the las-
ing [4]. By introducing the active refractive index of the
wires, we obtain the possibility to determine the spectra
and the associated thresholds of lasing for the eigen-
modes. Here, plane-wave scattering problems serve as
auxiliary ones that yield initial guesses for the lasing fre-
quencies of eigenproblems.
The considered resonator consists of circular cylinders

parallel to the z axis and periodic along the x axis; see
Fig. 1. The distance between cylinder centers (i.e., peri-
od) is p, and their radii are a. We suppose that the elec-
tromagnetic field is time-harmonic ∼ expð−iωtÞ and does
not vary along the z axis.
Then two alternative polarizations, E and H, can be

considered separately using the Ez or Z0Hz component
of the electromagnetic field, respectively. This function
must satisfy the Helmholtz equation with appropriate
wavenumbers inside and outside of cylinders, the Svesh-
nikov radiation condition at infinity (see [5] for the expli-
cit form), the condition of local integrability of power,
and the boundary conditions demanding continuity of
the tangential field components at the cylinder boundary.
The free-space wavenumber is k ¼ ω=c ¼ 2π=λ, where c

is the free-space light velocity and λ is the wavelength,
while inside the cylinders it is kν, where ν ¼ α in the scat-
tering problem and ν ¼ α − iγ in the eigenproblem. The
values of α and γ are real and positive; the former is
the refractive index and the latter is the material gain that
appears in the presence of a pump. For detailed dis-
cussion of the modified eigenproblem approach in the
linear modeling of microcavity lasers see [4]. It has been
already applied to the threshold analysis of two-
dimensional entirely and partially active circular micro-
cavities in [6,7], and to one-dimensional quantum-well
equipped VCSEL-type layered cavities in [8].

Here, we use the Floquet theorem and assume that the
field functions within the adjacent elementary cells of the
periodic cavity are the same, i.e., Uðxþ p; yÞ ¼ Uðx; yÞ.
Then the scattering problem implies normal incidence
and can be reduced to the consideration of one elemen-
tary cell of the grating, similar to [1–3]. This leads to
the Fredholm second-kind infinite-matrix equation,
whose numerical solution has guaranteed convergence,
½I þ Gðκ; ξ; νÞ�X ¼ B, where we denote κ ¼ ka and
ξ ¼ p=a, I is an identity matrix, and X and B are the vec-
tor of the Floquet-harmonic amplitudes of U and the
right-hand-part vector, respectively (see [1,3] for details).
In the case of the eigenproblem, there is no incident field
(B ¼ 0), and we have to find eigenfunctions U corre-
sponding to the eigenvalue pairs ðκ; γÞ. This leads to sol-
ving the determinantal equation, det½I þ Gðκ; ξ; νÞ� ¼ 0,

Fig. 1. Cross section of the periodic cavity of active dielectric
circular cylinders or quantum wires.
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where all coefficients are the same as in the scattering
problem, except for ν, which is nowa complex value. Note
that the matrix G is similar to Eqs. (4) and (5) of [9] for a
two-disk laser, with the two-term sumof Hankel functions
being replaced with an infinite lattice sum [1–3]. Note
also that similar, but still different, transcendental or de-
terminantal equations lie in the core of numerical thresh-
old studies of other microcavity laser configurations
reported in [10,11].
In Figs. 2(a) and 2(b), we show the reflectance of the

circular-wire grid for the E- and H-polarization cases, re-
spectively, as a function of the normalized frequency,
σ ¼ p=λ, and relative distance between the wires whose
material has refractive index α ¼ 1:4142. The bright ridges
are the areas of intensive reflection caused by the reso-
nances associated with the eigenmodes. Note that sin-
gle-wire eigenvalues, perturbed by the presence of the
other wires, exist in the case of an infinite chain as well.
If ξ → ∞, then the corresponding maxima of reflectance
cross the vertical lines σ ¼ 1; 2;… as inclined lines, be-
cause here κ ¼ ka ≈ const and hence σ ¼ ðκ=2πÞξ ≈
constξ. These are the wire eigenmodes.
However, our main interest relates to the eigenvalues

of a different nature that manifest themselves as the max-
ima in Figs. 2(a) and 2(b) that tend to σ ¼ 1; 2;… if
ξ → ∞. Such resonances have been reported earlier in
[12–14], where the plane-wave scattering by a grid of very
thin dielectric wires was considered analytically. Our
detailed study has revealed that they are caused by

the eigenmodes of the air gap between the quantumwires
and, therefore, have no counterparts among the single-
wire eigenvalues. We will call them the grating eigen-
modes, which has to be distinguished from the term lat-
tice modes used as a synonym to the Floquet harmonics,
which are not the eigenmodes of the grating but are the
individual terms in the series field representation.

When looking for the roots of a determinantal
equation, we take the frequency of the corresponding
maximum of reflectance, add a small threshold of the or-
der of 0.01, and use this data as initial guess in the itera-
tive algorithm. In Figs. 3 and 4, we present the
dependences of the lasing frequencies and thresholds

Fig. 3. (Color online) Dependences of the (a) frequencies and
(b) thresholds of lasing for the H-polarized grating modes Hþ

1
and H−

1 from the relative distance between the wires at
α ¼ 1:4142.

Fig. 4. (Color online) Same as in Fig. 3 for the E-polarized
grating modes Eþ

1 and E−

1 .

Fig. 2. (Color online) Reflectance of the circular-wire grating
in the (a) H-polarization and (b) E-polarization cases as a
function of the normalized frequency σ and relative distance
ξ between the wires of refractive index α ¼ 1:4142.
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for two lowest-order E-type and H-type eigenmodes of
the above-mentioned type for a grid of active quantum
wires, as a function of relative distance between the
wires, ξ ¼ p=a. Note that the Hþ

1 and Eþ
1 eigenmodes

have the fields symmetric across the x axis, and the ei-
genmodes H−

1 and E−

1 have the fields antisymmetric
across that axis. The threshold material gain of the eigen-
mode Hþ

1 reaches maximum at ξ ≈ 3:1 and goes down if
the interwire distance increases. The threshold of the
eigenmode H−

1 grows monotonically; however, its fre-
quency quickly approaches the value σ ¼ 1. This value
is the branching point for the lattice sums involved in
the elements of the G matrix [1], and therefore the com-
putations fail when the distance to it gets smaller than
10−7. The lasing frequencies and thresholds of the E-type
grating eigenmodes, Eþ

1 and E−

1 , show similar behavior:
the threshold of the former has a maximum at ξ ≈ 4:4,
and that of the latter grows monotonically while its fre-
quency quickly approaches σ ¼ 1. Note that the thresh-
old gain of the H-type grating modes is much smaller
than that of the E-type modes; this is apparently linked
to the fact that the quantum wire material is nonmag-
netic. The most interesting feature is the decrement of
the thresholds for the x-even eigenmodes Hþ

1 and Eþ
1

if the grating of quantum wires gets sparser. This beha-
vior is drastically different from the behavior of the lasing
thresholds for the wire eigenmodes—they increase if the
interwire distance gets larger and always remain finite.
Moreover, the wire eigenmode thresholds (not shown
here) grow if the wires get closer, in contrast to the
thresholds of the grating eigenmodes presented here.

Therefore, the grating eigenmodes of the infinite periodic
chain of quantum wires that have subwavelength dia-
meter are the most promising candidates for lasing when
pumping is applied.
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