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Pedro Ludwig Hernańdez-Martínez,†,‡ Alexander O. Govorov,§ and Hilmi Volkan Demir*,†,‡

†LUMINOUS! Center of Excellence for Semiconductor Lighting and Display, School of Electrical and Electronics Engineering,
Physics and Applied Physics Division, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
639798, Singapore
‡Department of Physics, Department of Electrical and Electronics Engineering, UNAM - National Nanotechnology Research Center
and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
§Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States

ABSTRACT: Förster-type nonradiative energy transfer
(NRET) is widely used, especially utilizing nanostructures in
different combinations and configurations. However, the
existing well-accepted Förster theory is only for the case of a
single particle serving as a donor together with another particle
serving as an acceptor. There are also other special cases
previously studied; however, there is no complete picture and
unified understanding. Therefore, there is a strong need for a
complete theory that models Förster-type NRET for the cases
of mixed dimensionality including all combinations and configurations. We report a generalized theory for the Förster-type
NRET, which includes the derivation of the effective dielectric function due to the donor in different confinement geometries
and the derivation of transfer rates distance dependencies due to the acceptor in different confinement geometries, resulting in a
complete picture and understanding of the mixed dimensionality.

I. INTRODUCTION

Semiconductor nanostructures have been studied extensively in
the past decade.1−3 Today nanotechnology offers means to
assemble and study superstructures, for example, those
composed of nanocrystals and biomolecules.4−6 For instance,
by using a biomolecular linker, one can assemble crystalline
nanoparticles and nanowires into complex structures with new
physical and chemical properties.7−10 Unique properties result
from the quantum confinement and chemical composition of
the building blocks of these superstructures (e.g., metal
nanoparticles, semiconductor nanocrystals, biomolecules).
Furthermore, interactions between these unit elements lead
to enhanced properties for the hybrid superstructure. One of
the important mechanisms for strong interaction between the
building blocks is the nonradiative energy transfer (NRET),
also dubbed Förster-type resonance energy transfer
(FRET).11,12 NRET results from the Coulomb interaction
between excitons confined in the nanostructures. It is an
efficient mechanism for coupling optically excited nanostruc-
tures. Such coupled superstructures can strongly change their
physical properties. In particular, these changes can be observed
in optical experiments of characterizing strongly packed
structures. In the presence of optical excitation, the Coulomb
(dipole−dipole) interaction results in the energy transfer
between the elements (or building blocks).7,13−17 The resulting
energy transfer effect is observed by the directional flow of
excitons between the building blocks.

Numerous studies have previously been reported on NRET
and related effects in systems of certain dimensionality. For
example, several aspects of the energy transfer for nano-
particle−nanoparticle, nanoparticle−biomolecule, nanopar-
ticle−nanorod, nanoparticle−surface, and quantum well−nano-
particle were discussed in refs 8, 14, and 18−24. Also, refs
25−34 studied the energy transfer for the hybrid systems
including nanoparticle−nanowire, nanoparticle−nanorod,
nanoparticle−nanotube, nanowire−nanowire, and nanopar-
ticle−nanosheet. Ref 35 reported chemically controlled
NRET in nanoparticle composites. Nevertheless, to date, a
complete unified understanding on the modifications of NRET
when using mixed dimensionality, with all possible combina-
tions of quantum objects, for example, nanoparticles (NPs),
quantum wires, that is, nanowires (NWs), and quantum wells
(QWs) lacks. Although the resulting NRET rates are
fundamentally modified due to the mixed dimensionality, the
distance dependency correlated to the dimension of the donor
or the acceptor and their roles in modifying NRET have not
been understood. However, understanding these modifications
is essential to utilizing these nanostructures for high efficiency
light generation and harvesting. Therefore, differentiating these
effects with respect to the donor versus the acceptor is critically
important.
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In this paper, a complete study of the generalized Förster-
type NRET between nanostructures consisting of mixed
dimensions in confinement (NP, NW, and QW) is presented.
We investigate the modification of NRET mechanism with
respect to the nanostructure serving as the donor versus the
acceptor, focusing on the rate’s distance dependency and the
role of the effective dielectric constant on NRET. In this work,
the combinations of NW → NP, QW → NP, QW → NW, and
NW → QW (where the donor → acceptor (D → A) denotes
the energy transfer directed from the donor to the acceptor)
were specifically considered because they have not previously
been theoretically studied. Moreover, we obtain a set of
analytical expressions for NRET in the cases mentioned above
and derive generic expressions for the dimensionality involved
to present a unified generalized picture of NRET. Finally, the
asymptotic behavior of these equations and the comparisons
between all possible cases are presented and discussed.

II. DIPOLE POTENTIAL FOR EXCITON IN A
NANOPARTICLE, NANOWIRE, AND QUANTUM
WELL

In this section, the analytical equations for the exciton electric
potential inside and outside the nanostructures are obtained.
For the long distance approximation, a set of convenient
expressions for the outside electric potential are also derived.
Moreover, we obtain the effective dielectric constant
expressions in this limit.
A. Nanoparticle Case. The electric potential for an exciton

in the α-direction (α = x, y, z) inside a spherical NP, illustrated
in Figure 1a, is given by
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where edexc is the exciton dipole moment and εNP and ε0 are the
NP and medium dielectric constants, respectively. The electric
potential is the same in any direction because of the spherical
symmetry of the NP. In the long distance approximation, the
outside electric potential can be simplified as
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where εeff is the effective dielectric constant given by
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B. Nanowire Case. For the case of a long cylindrical NW,
the electric potential for α-exciton (α = x, y, z), shown in Figure
1a, can be written as the sum of the electric potential of the
exciton inside the NW plus a second term to account for the
boundary between the NW and the outside medium. Thus, the
electric potential is expressed as

∫∑ ρΦ = Φ + | |α α
φ α−e e A k I k k( ( ) ( ))d

m

im iky
m m

in

(5)

Figure 1. (a) Schematic for an exciton in a NP, NW, and QW. Red circle represents an exciton in the α-direction. RNP(NW) is the NP (NW) radius.
LQW is the QW capping layer thickness. Total and long distance approximation electric potentials for the z-exciton inside (b) an NP; (c) an NW; and
(d) a QW.
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where Im(|k|ρ) and Km(|k|ρ) are the modified Bessel functions
of order m; φ is the angular component running from 0 to 2π, k
is the expansion along the cylinder axis [k ∈ (−∞,∞)]; and Φα

is the electric potential for an α-exciton inside the NW. After
applying the boundary conditions at the surface of the NW, Am
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The outside electric potential, in the long distance
approximation, for an exciton in the α-direction, is simplified as
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where εeff is the effective dielectric constant. εeff is given by eq
11 if the exciton is along the cylinder main axis and by eq 12
when the exciton is perpendicular to the cylinder main axis.
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C. Quantum Well Case. A thin QW embedded in a semi-
infinite dielectric medium is considered, as depicted in Figure
1a. In a similar manner as the previous case, the electric
potential can be written as the sum of the electric potential of
the exciton inside the dielectric medium plus a second term to
include the change between the dielectric and outside media.
Therefore, the electric potential in the cylindrical coordinates
for a α-exciton (α = x, y, z) is written as
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where Jm (kρ) is the Bessel function of order m, φ is the angular
component running from 0 to 2π, k is the expansion along the
cylinder radius, and the electric potential for an α-exciton inside
the QW is Φα. The boundary conditions at the surface of the
QW yield the coefficients Am

α and Bm
α

=
−| |

| |
α α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A k

k L

k L
B k( )

exp( )

cosh( )
( )m m

QW

QW (15)

ε ε

ε ε
=

− | |

| | +
α

α

−| |B k
h k

k k L e
( )

( ) ( )

( tanh( ) )m
m

k L
0 QW

QW QW 0
QW

(16)

where hm
α (|k|) is defined as
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The outside electric potential for an exciton in the α-
direction, in the long distance approximation, is
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where εeff is the effective dielectric constant giving by for all α-
direction

ε ε=eff 0 (19)

A summary for the effective dielectric constant in the long
distance approximation is given in Table 1, which shows the

symmetry and screening factors for the electric potential in
each case. This screening factor is the result of the interface
between the nanostructure (NP, NW, and QW) and the
outside medium. As expected, the screening factor for the NP
case is the same for an exciton in the x-, y-, and z-directions
because of the spherical symmetry. In the cylindrical symmetry
(NW case), an exciton in the cylindrical main axis does not
have any screening factor because the exciton dipole moment is
perpendicular to the cylinder’s normal surface vector. However,
an exciton perpendicular to the cylindrical main axis has a
screening factor as given in Table 1. The reason for this
screening factor stems from that fact that the exciton dipole
moment is parallel to the cylinder’s normal surface vector. In
the QW case, we do not observe any screening factor for an
exciton in the x-, y-, or z-direction. This can be explained due to
the fact that we choose the cylinder axis along the z axis and
make the limit ρ→∞ to account for an infinite plane (QW). It
is worth mentioning that we consider an infinite cylinder for
the NW case and an infinite plane for the QW embedded in a
semi-infinite dielectric medium. Note that Table 1 follows the
geometries sketched in Figure 1.
Figure 1 depicts the total and long distance approximation

electric potentials for a z-exciton along the z axis. Figure 1b
shows both the total and long distance approximation electric
potentials for a z-exciton inside an NP. It is observed that both
electric potentials overlap each other because of the spherical
symmetry of the nanostructure (eqs 1, 2, and 3). In a similar
manner, the total and long distance approximation electric

Table 1. Effective Dielectric Constant Summarya

α-direction NP NW QW
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aEffective dielectric constant expressions for the cases of NP, NW, and
QW in the long distance approximation. This table follows the
geometries given in Figure 1.
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potentials for a z-exciton in a long NW are depicted in Figure
1c. In close proximity to the NW surface, the long distance
approximation underestimates the exciton electric potential, as
it is shown in Figure 1c. In the QW case, the long distance
approximation overestimates the exciton electric potential in
the close proximity to the QW surface (Figure 1d). This is an
opposite effect compared to the NW case. In all cases, at long
distances the total electric potential converges to the long
distance approximation (Figure 1b−d).

III. THEORETICAL FORMALISM FOR FÖRSTER-TYPE
NONRADIATIVE ENERGY TRANSFER

In this section, we outline the macroscopic approach to the
problem of dipole−dipole energy transfer. We restrict ourselves
to the case of a single electron−hole pair (exciton) in the donor
nanostructure. Moreover, we consider only two states |0⟩- the
ground state and |exc⟩- the excited state. These states are
considered using simplified wave functions such that we
consider excitonic states without the mixing between the
heavy- and light-hole states. Furthermore, the spin part is not
considered in our model.
NRET is a directional process, which is initiated by an

absorbed photon in a donor generating an exciton in a higher
excited state and then the exciton relaxing very fast to the first
excited state by higher order processes. This exciton can
subsequently be either recombined (through a radiative or
nonradiative means) or transferred to an acceptor because of
the Coulomb interaction between dipoles in the D−A pair. If
the exciton is transferred, it will occupy a higher excited state in
the acceptor and relax (very fast) to its first excited state to
finally recombine through a radiative or nonradiative process.
NRET occurs only when the donor possesses a greater or equal
band gap compared to the acceptor. The diagram for the
energy transfer process is shown in Figure 2.

The probability of an exciton transfer from a donor
nanostructure (donor) to an acceptor nanostructure (acceptor)
is given by the Fermi’s Golden rule (eq 20).
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where |iexc;0exc⟩ is the initial state with an exciton in the donor
and zero exciton in the acceptor; |fexc;0exc⟩ is the final state with
an exciton in the acceptor and zero exciton in the donor; V̂int is
the exciton Coulomb interaction operator; and ℏωexc is the
exciton’s energy. Neglecting the coherent coupling between
excitons, the initial and final states can be written as |iexc;0exc⟩ = |
iexc⟩|0exc⟩ and |fexc;0exc⟩ = |fexc⟩|0exc⟩, respectively, and the Fermi’s
Golden rule can be approximated by
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where Ûint = ⟨|0exc|V̂int|iexc⟩ is the potential energy created by the
exciton. With this approximation, the Fermi’s Golden rule can
be simplified with the used of the fluctuation dissipation
theorem (FDT)36 together with the QD formalism developed
in refs 27 and 37. The final expression for the transfer rate is
given by
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where the integration is taken over the acceptor volume, εA(ω)
is the dielectric function of the acceptor, and Ein(r) includes the
effective electric field created by an exciton at the donor side.
The electric field is calculated with E(r) = −∇Φ(r) and the
electric potential Φ(r) is given by

α
ε

Φ =
− · ̂

| − |α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r

r r
r r

( )
ed ( )exc

eff

0

0
3

D (23)

where edexc is the dipole moment of the exciton and εeffD is the
effective dielectric constant of the donor, which depends on the
geometry and the exciton dipole direction, α = x, y, z.
Furthermore, the average NRET rate (at room temperature) is
calculated as

γ
γ γ γ
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+ +
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where γα,trans is the transfer rate for the α-exciton (α = x, y, z).
A. Nanowire → Nanoparticle and Quantum Well →

Nanoparticle Energy Transfer Rates. The NRET rate
analytical equations, when the donor is a NW or a QW and the
acceptor is a NP (Figure 3a and b, respectively), are derived.
Moreover, in the long distance approximation, we obtain
simplified expressions for the transfer rate for these cases (NW
→ NP and QW → NP). Assuming that the donor size is
smaller than the separation distance between the D−A pair and
using the spherical symmetry of the acceptor, the total electric
potential for the acceptor can be written as
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Figure 2. Energy diagram for the directional process of exciton transfer
from the donor to the acceptor. Blue dash lines represent the
absorption process of the nanostructure (donor/acceptor). Blue solid
lines denote fast relaxation process. Red dash lines show light emission
process (relaxation from the lowest excited state to ground state).
Black solid lines represent the energy transfer from the donor to the
acceptor. Horizontal solid black line illustrates the Coulomb
interaction between the donor and the acceptor.27.
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where Φα (r,θ,ϕ) is the electric potential of the exciton in the
donor; Yl,m (θ,ϕ) are the spherical harmonics; and Al,m
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and εout = ε0 is the dielectric constant of the medium, and εin =
εNPA

is the dielectric function of the acceptor. Thus, the energy
transfer rate is
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where Al,m
α is given by eq 27. This is a general expression valid

under the assumption mentioned above. From eq 31, it is
observed that the distance dependency for the transfer rate is
given by the coefficient Al,m

α . The asymptotic behavior (in the
long distance limit) for the transfer rate in the dipole
approximation for NW → NP and QW → NP is derived. In
these cases, we assume that the donor size is small compared to
the separation distance d. Under this condition, the transfer rate
(γα,trans) is
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where bα = (1/3), (1/3), and (4/3) for α = x, y, z, respectively;
θ0 is the angle between d and r; εeffD is the effective dielectric
constant for the exciton in the donor. For the NW-to-NP case,
the effective dielectric constant is εeffD = ε0 (eq 11) for α = y

(parallel to the cylindrical axis) and εeffD = ((εNW + ε0)/2) (eq

Figure 3. Schematic for the energy transfer of (a) NW → NP and (b) QW → NP. Red arrows show the energy transfer direction. Red circles
represent an exciton in the α-direction. d is the separation distance. θ0 is the azimuthal angle between d and r. φ is the radial angle. (c) Average
NRET rate for the CdTe D−A QW → NP pair as a function of the distance and angle. (d) Contour profile map for the average NRET rate for the
CdTe D−A QW → NP pair, with the top panel at a fixed angle and right panel at a fixed distance.
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12), α = x, z (perpendicular to the cylindrical axis). For the
QW-to-NP case, it is equal to εeffD = ε0 (eq 19) for α = x, y, z.
The NRET rates are proportional to the imaginary part of the
acceptor dielectric constant. Thus, an acceptor with high
absorption (large Im|εNPA(ω)|) will have higher transfer rates.
Moreover, the transfer rate strongly depends on the distance
and θ0. In particular, for the angle dependency, the main
contribution comes from small θ0 and decreases very fast as θ0
increases. It is important to notice that the transfer rate in these
cases (NW-to-NP and QW-to-NP) follows the same distance
dependency as the NP-to-NP transfer rate, which is γ ∝ d−6.38

These results suggest that the NRET rates are dictated by the
acceptor’s dimensionality, but not the donor’s.
To illustrate the NRET rate, we present the average NRET

rate in the long distance approximation as a function of distance
for CdTe D−A pair in Figure 3c,d. Here, we consider the donor
to be an NW or a QW and the acceptor to be an NP. In this
plot, we assume that the acceptor exciton emission is at λ = 582
nm. In addition, the acceptor dielectric function is taken from
ref 39. Figure 3c shows the energy transfer rate for the QW-to-
NP case. Figure 3d depicts the contour profile plot for the QW-
to-NP transfer rate. The top panel in Figure 3d illustrates the
energy transfer rate as a function of the distance at a fixed angle.
Blue curve represents the case at θ0 = 0, and wine curve, at θ0 =
π/6. The right panel in Figure 3d shows the transfer rate as a
function of angle at a fixed distance. Red curve represents the
case at d = 3.3 nm, and the green curve, at d = 4.0 nm. From
Figure 3c,d, the strong distance dependency of the transfer rate

(eq 32) is observed. Therefore, the main contribution for the
energy transfer from a QW(NW) to an NP comes at short
distances and small angles.

B. Quantum Well → Nanowire Energy Transfer Rate.
We derive an analytical equation for the NRET rate when the
donor is a QW and the acceptor is an NW (Figure 4a). The
simplified expression for NRET rate in the long distance
approximation is also obtained. Similar to the previous case, we
assume that the donor size is small compared to the D−A
separation distance d. Taking advantage of the cylindrical
symmetry of the acceptor, the total electric potential for the
acceptor can be written as
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where Φα(ρ, ϕ, z) is the electric potential of the exciton in the
donor; Im(|k|ρ) and Km(|k|ρ) are the modified Bessel functions;
and Am

α(k), Bm
α(k) are the coefficients given by eqs 35 and 36.

These coefficients are determined by the boundary conditions
Φα

in(ρ = RNWA
, ϕ ,z) = Φα

out(ρ = RNWA
, ϕ ,z) and

εNW((∂Φα
in(ρ ,ϕ ,z))/(∂ρ))ρ=RNWA

= ε0((∂Φα
out(ρ ,ϕ ,z))/

Figure 4. (a) Schematic for the energy transfer of QW→ NW. Red arrows show the energy transfer direction. Red circles represent an exciton in the
α-direction; d is the separation distance; θ0 is the azimuthal angle between d and r; φ is the radial angle. (b) Average NRET rate for the CdTe D−A
QW → NW pair as a function of the distance and angle. (c) Contour profile map for the average NRET rate of QW → NW, with the top panel at a
fixed angle, and right panel at a fixed distance. (d) Average NRET rate for CdTe D−A pair with θ0 = 0. This plot illustrates the NRET rate distance
dependency for the QW → NW case.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp402242y | J. Phys. Chem. C 2013, 117, 10203−1021210208



(∂ρ))ρ=RNWA
, where εNW(0) is the NW and outside medium

dielectric function, respectively.
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The energy transfer rate is written as
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where Am
α(k) (eq 35) gives the distance dependency to the

NRET rate. Equation 39 is a general expression, again which is

valid under the assumptions mentioned above. In the long

distance approximation, the transfer rate equation for the QW-

to-NW case is
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where aα = 0, (9/16), (15/16); bα = 1, (15/16), (41/16) for α
= x, y, z, respectively; d is the center-to-center distance between
the donor and the acceptor; θ0 is the angle between d and r;
and εeffD is the effective dielectric constant for the exciton in the

donor, which is equal to εeffD = ε0 (eq 19) for α = x, y, z. As
expected, the asymptotic behavior for the NRET rate of the
QW → NW case follows γ ∝ d−5. This result is similar to the
NP-to-NW and NW-to-NW cases, as reported in previous
literature, refs 27 and 28, respectively. Similar to the previous
section, the NRET rates strongly depend on the distance and
θ0, and a similar analysis can be made. In addition, akin to the
section above, Figure 4b,c depict the average NRET rate for a
CdTe D−A pair as a function of the distance and θ0, when the
donor is a QW and the acceptor is an NW. For this plot, we
assume that the acceptor exciton emission is at λ = 610 nm and
the acceptor dielectric function is taken from ref 39. Figure 4c
shows the contour profile map for the QW-to-NW transfer rate.
The top panel in Figure 4c illustrates the energy transfer rate as
a function of the distance at a fixed angle. Blue curve represents
the situation at θ0 = 0, and wine curve, at θ0 = π/6. The right
panel in Figure 3c shows the transfer rate as a function of the
angle at a fixed distance. Red curve represents the behavior at d
= 3.3 nm, and the green curve, at d = 4.0 nm. Figure 4d gives
the semilog plot for the rates as a function of the distance at θ0
= 0. From Figure 4b−d, the strong distance dependency of the
transfer rate (eq 40), can be seen. Therefore, similar to the
previous section, the main contribution for the energy transfer
from a QW to an NW comes at short distances and small
angles.

C. Nanowire → Quantum Well Energy Transfer Rate.
The analytical equation for the NRET rate when the donor is
an NW and the acceptor is a QW (Figure 5a) is derived.
Moreover, the simplified expression for the NRET rate in the
long distance approximation is also obtained. Similar to the
previous cases, we assume that the donor size is small
compared to the D−A separation distance d. Furthermore,
we consider a symmetric structure, consisting of a semi-

Figure 5. (a) Schematic for the energy transfer of NW→ QW. Red arrows show the energy transfer direction. Red circles represent an exciton in the
α-direction; d is the separation distance; θ0 is the azimuthal angle between d and r; φ is the radial angle. (b) Average NRET rate for a CdTe D−A
pair. This plot shows the distance dependency of the NRET rate for the NW → QW case.
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conductor QW of thickness Lw between two barriers of
dielectric function εQW. One barrier has a film thickness Ll,
while the other barrier is considered to be very thick (we
assume that this barrier is semi-infinite). The donor
nanostructure is placed in front of the barrier with thickness
Ll and we solve the problem for the case where the QW is very
thin (Lw ≪ Ll). Under these assumptions, the electric potential
inside the barrier is

ε
ε ε

Φ =
+

Φα

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r r( )

2
( )in

0

QW 0 (41)

where ε0 is the dielectric constant outside the barrier and Φα is
the electric potential of an α-exciton in the QW. Therefore, the
transfer rate is
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where Eα(r) is the electric field created by an α-exciton in the
donor. By using the assumption that the QW is very thin (Lw
≪ Ll), the energy transfer rate becomes

∫γ
ε

ε ε

ε ω

π
=

ℏ +

× *

α α

α

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

dS E r

E r

2 2
Im

( )

4
( )

( )

,trans
0

QW 0

2

QW

QW

A A

A

(43)

where the integration is taken over the surface of the QW. In
particular, we obtain the analytical expression in the long
distance approximation for NW→ QW. In this case, we assume
db ≫ Lw where db is the distance from the center of the donor
to the dielectric barrier. Under these conditions, γα,trans becomes
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where bα = (3/16), (3/16), (3/8) for α = x, y, z, respectively; d
= db + Ll is the distance between the donor and the acceptor;
and εeffD is the effective dielectric constant given by εeffD = ε0 (eq

11) for α = y (parallel to the cylindrical axis) and εeffD = (εNW +
ε0)/2 (eq 12) for α = x, z (perpendicular to the cylindrical
axis). Note that the NRET rate for the NW→ QW case follows
the well-known asymptotic behavior γ ∝ d−4 akin to the NP →
QW and QW → QW cases reported in refs 40 and 41,
respectively. Figure 5b shows the average NRET rate for a
CdTe D−A pair as a function of the distance, when the donor
is an NW and the acceptor is a QW. In this computation, we
made similar assumptions as in the previous section.
To summarize our NRET studies, Table 2 lists the transfer

rates in the long distance asymptotic behavior in the dipole
approximation for all possible combinations with mixed
dimensionality. Here, Table 2 illustrates the functional distance
dependency for the NRET: (1) when the acceptor is an NP,
NRET is inversely proportional to d6 (eq 32); (2) when the
acceptor is an NW, NRET is proportional to d−5 (eq 40); and

(3) when the acceptor is a QW, NRET is proportional to d−4

(eq 44). This indicates that the donor dimensionality (NP,
NW, QW) does not affect the functional dependency on the
distance. To complete our analysis, we also graphically present
the distance dependencies, given in Table 2, in Figure 6 (top
panel). Here, the energy transfer rates are given as a function of
d/d0, where d0 is the characteristic distance, which satisfies the
asymptotic condition required for each case (d ≫ RNP,(NW), d
≫ LQW). Figure 6 (bottom panel) further illustrates the energy
transfer efficiency for the NRET as a function of d/d0. As
expected, the fastest decay is possible when the acceptor is an

Table 2. Nonradioactive Energy Transfer Rate Summary for
the Long Distance Asymptotic Limita

donor(D)\acceptor(A) NPA NWA QWA

NPD NPD → NPA NPD → NWA NPD → QWA

NWD NWD → NPA NWD → NWA NWD → QWA

QWD QWD → NPA QWD → NWA QWD → QWA

acceptor distance
dependency γ ∝

d
1

NP 6 γ ∝
d
1

NW 5 γ ∝
d
1

QW 4

aThis list shows the distance dependence of the NRET rate given the
acceptor’s geometry. Italics indicates the cases that have not been
theoretically studied before.

Figure 6. NRET rate distance dependency in the long distance
asymptotic limit (top). Energy transfer rates and efficiencies are
plotted as a function of d/d0, where d0 is the characteristic distance,
which satisfies the asymptotic condition required for each case (d ≫
RNP,(NW), d ≫ LQW). Red line shows the case when the acceptor is an
NP. Green line illustrates the case when the acceptor is an NW. Blue
line depicts case when the acceptor is a QW. In all of them X can be an
NP, an NW, or a QW. Energy transfer efficiency for the NRET in the
long distance asymptotic limit (bottom).
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NP and the slowest decay is possible when the acceptor is a
QW. In all cases, the NRET’s distance dependency is given by
the acceptor geometry and it is independent of the donor’s
geometry. Note that the effective dielectric constant, however,
depends only on the donor’s geometry. Therefore, we can
conclude that the NRET’s distance dependency is dictated by
the confinement degree of the acceptor nanostructure, whereas
the donor’s confinement affects the modification of effective
dielectric constant.

VII. CONCLUSION
In summary, we have obtained a unified picture and
understanding of the nonradiative energy transfer for
nanostructures of mixed dimensionality, and completed the
missing cases (NW → NP, QW → NP, QW → NW, and NW
→ QW) for the NRET rates in all possible combinations. We
obtained analytical expressions for the NRET rate in the long
distance approximation and compared our results with the ones
already reported in the literature and included those cases that
have not previously been studied. We showed that the distance
dependence of the NRET rate depends on the geometry and
dimensionality of the acceptor and on the effective dielectric
constant of the donor. The expressions presented in this work
will be a convenience reference to estimate the NRET rate for
nanostructures involving mixed dimensionalities. In addition,
the NRET results obtained here can help in the optimization
and the design of new experiments and new devices for high
efficiency light harvesting and light generation systems.
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M. V. Exciton-Plasmon-Photon Conversion in Plasmonic Nanostruc-
tures. Phys. Rev. Lett. 2007, 99, 136802/1−136802/4.
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