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The quantum effects for a physical system can be described by th&73¢tof
positive operators on a complex Hilbert spddethat are bounded above by the
identity operator. While a general effect may be unsharp, the collection of sharp
effects is described by the set of orthogonal projecti®is() C £(H). Under the
natural order&(H) becomes a partially ordered set that is not a lattice if #im
=2. A physically significant and useful characterization of the paifB € £(H)

such that the infimumAOB exists is called the infimum problem. We show that
AP exists for allAe E(H), P e P(H) and give an explicit expression fé&1P.

We also give a characterization of whafl(l - A) exists in terms of the location of

the spectrum ofA. We present a counterexample which shows that a recent con-
jecture concerning the infimum problem is false. Finally, we compare our results
with the work of Ando on the infimum problem. @005 American Institute of
Physics.[DOI: 10.1063/1.1904704

I. INTRODUCTION

A quantum mechanical measurement with just two values 1 aiwd Pes and npis called a
quantum effectThese elementary measurements play an important role in the foundations of
quantum mechanics and quantum measurement tfieory***'®we shall follow the Hilbert
space model for quantum mechanics in which effects are represented by positive operators on a
complex Hilbert spacé{ that are bounded above by the identity operatdn this way the set of
effects&(H) becomes

EH)={A e B(H)0<A<I}.

The set of orthogonal projectior8(+) C £(H) corresponds to sharp effects while a geneéxal
e &(H) may be unshargfuzzy, imprecise¢ Employing the usual ordeA<B for the set of
bounded self-adjoint operato&&H) on H, we see thaté(H), <) is a partially ordered set. It is
well known that(&(H), <) is not a lattice if dinfH =2. However, if the infimumADOB of A,B
e E&(H) exists thenADB has the important property of being the largest effect that physically
implies bothA and B. It would thus be of interest to give a physically significant and useful
characterization of wheA[B exists. This so-called infimum problem has been considered for at
least 10 year§!0-*217.19

Before discussing the progress that has been made toward solving the infimum problem, let us
compare the situation with that of the partially ordered &8tH),<). Of course, ifA,B
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e S(H) are comparable, that iB\<B or B<A, thenA[B exists and is the smaller of the two. A
surprising result of Kadisdn states that the converse holds. Thus,&oB e S(), AOB exists in
S(H) if and only if A andB are comparable. We conclude tH&(H), <) is an antilattice which
is as far from being a lattice as possible. The situation is quite differe@(#), <). In fact it is
well known thatPJQ exists in&(H) for all P,Q e P(H). More generally, we shall show that
AP exists in&(H) for all Ae &(H), P e P(H) and give an explicit expression féx[JP. The
existence ofA[JP has already been proved in Ref. 18 but we present a different proof here.

For ABe&(H) let P,g be the orthogonal projection onto the closure of
Rar(AY2) N Ran(B?). It is shown in Ref. 19 that if dini{ <o then AOB exists in&(H) if and
only if AOP,g andBOP, g are comparable and in this ca&&lB is the smaller of the two. This
was considered to be a solution to the infimum problem for the caseHdite and it was
conjectured in Ref. 19 that this result also holds in general. One of our main results is that this
conjecture is false. We shall present an example of afddre £(H) with dim H=c for which
AOB exists in&(H) but AP,g and BOP, g are not comparable. In addition, we prove that,
assumingA B exists,P, g is the smallest of all orthogonal projectioRshaving the property that
(AOP)O(BOP) exists and(AOP)O(BOP)=A0B. Combined with the counter-example as de-
scribed before, this means that, in the infinite dimensional case, there is no orthogonal projection
to replaceP, g and have a positive solution to the infimum problem.

Thenegation A of an effectA is defined to be the effeét’ =1 -A. Physically,A’ is the effect
A with its values 1 and O reversed. We also present a simple spectral characterization of when
ATA’ exists in€(H). The result is essentially the same as Theorem 2 in Ref. 2, with the difference
that we express the condition in terms of the location of the spectruinaoid the proof is based
on the matrix representations obtained in the preceding section.

Ando has given a solution to the infimum problem in terms of a generalized shorted oﬁerator.
However, in our opinion, these shorted operators do not have a physical significance in contrast to
the operationally defined operatofs 1P, and BP,g. Finally, we discuss the relationship
between our work and that of Ando. First, we show that the shorted operatobyB is always
smaller thanAOP,g. Actually, it is the fact, that in the infinite dimensional case, the shorted
operator ofA by B can be strictly smaller thaAlIP,g, that is responsible for the failure of a
solution of the infimum problem similar to the finite dimensional case. This can be viewed from
the counter-example as before, but we record also a simpler one that illustrates this situation.

We now briefly discuss connections between the infimum problem and physics. Quantum
effects have been studied by mathematicians and physicists for over 4CF'§7%%17r8.esides the
applications of effect-valued measures in quantum measurement theory, many researchers consider
effects to be the basic elements of important quantum structures. In recent times quantum effects
have been organized into a structure called an effect aléécbmd their order properties have
been studied>*?*’Among other things, the effect algebféH) is a partially ordered set and if
A[B exists forA,B, € £(H), then this effect has important physical properties. In particular,
among all the effects that have a smaller probability of occurring thanAatidB, ACB has the
largest probability. Thus iALB exists, thenAIB has a crucial physical significance. In the case
whereA andB are sharpA andB are projectionsAB always exists and is the projection onto
the intersection of their ranges. ButAfandB are not sharp, the situation is much more compli-
cated. An interesting special case is whfea £(H) andP € P(H). In this caséA[IP always exists
and if A andP commute(are compatiblethen ACIP=AP. However, ifA and P do not commute
an explicit closed form expression f&{ P has been difficult to obtain and is now presented in
Theorem 2.2. We can now define conditional probabilities

prob(A|P) = prok(A 0 P)/proh(P)

and conditional measurements and these may have useful physical applications. Finally, our Ex-
ample 4.2 gives a surprising phenomenon that does not occur in finite dimensional Hilbert spaces.
The existence of effects such as those in this example may have interesting physical significance.
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II. INFIMUM OF A QUANTUM EFFECT AND A SHARP EFFECT

We first record a parametrization of bounded positive2matrices with operator entries, in
terms of operator balls.

In the following we make use of thErobenius-Schur factorizatiorfor T, X, Y, Z bounded
operators on appropriate spaces dnbloundedly invertible, we have

[T x]_[ | OHT 0 MI T'lx} -
Yy z| YTt 1]lo z-yTX|lo 1 [ 29

For instance, by using Frobenius—Schur factorizations and a perturbation argument one can obtain
the following classical result of Shmulyah.

Theorem 2.1 Let Ae B(H) be self-adjoint and< ="+, @ H, an orthogonal decomposition of
H. Then A=0 if and only if it has a matrix representation of the following form:

~ A AT AL?
ClAVTAYZ p,

where A € B(Hy)*, A, e B(H,)", andT" e B(H,,H,) is contractive

In addition, the operatorl’ can be chosen in such a way th&er(I') DKer(A,) and
Ker(I'") DKer(A,), and in this case it is unique

For two effectsA,B e £(H) we denote byA[IB, theinfimum equivalently, thegreatest lower
bound of A andB over the partially ordered s€f(H), <), if it exists. To be more precisé&[1B
is an operator irf(H) uniquely determined by the following propertiestIB<A, AOB<B, and
an arbitrary operatob € £('H) satisfies bottD <A andD=<B if and only if D<AB. Charac-
terizations of the existence of infimum for positive operators have been obtained for the finite-
dimensional case in Ref. 19, and in general in Ref. 2.

In Theorem 4.4 of Ref. 19 it is proved that the infimuailP exists for anyA e £(H) and
P eP(H). As a consequence of Theorem 2.1 we can obtain an explicit descriptidilef
together with another proof of the existence.

Theorem 2.2:For any Ae £(H) and Pe P(H) the infimum AIP exists, more precisely, if A
has the matrix representation as if2.2) with respect to the orthogonal decompositiGt
=Rar(P) @ Ker(P), where A e &(RanP)), A, e &(Ker(P)), and I' e B(Ker(P), Rar(P)), with
ITII<1, KenT') DKer(A,) andKer(I'") DKer(A,), then

} with respect toH = H,; ® H,, (2.2

AY2(1-TTAY? 0

0 0} with respect toH = Rar(P) @ Ker(P). (2.3

AOP= {
Proof: Let Ae &(H) andP € P(H). In the following we consider the orthogonal decomposi-
tion H=Rar(P) @ Ker(P). By Theorem 2.1A has a matrix representation as (2.2), with A,
e B(Ran(P))*, A, e B(Ker(P))*, andI" e B(Ker(P),Rar(P)), with IT'll< 1, KerI") D Ker(A,) and
Ker(I'") DKer(A,). SinceA<I it follows that A; <Igarp) and A< Ilyqp). Consider the operator
D e B(H), defined by the matrix iri2.3). Clearly O<D <P, in particularD € £(H). In addition,
A—D-= l 1 1 1 1A

. = F*Al/ZA]./ * I‘*A]./ZA]./ = O,
A%/ZF Ai/z A2 ] [ 1 M2 2] [ 1 M2 2]

henceA=D.
Let C € £&(H) be such thaC<A, P. FromC=P it follows that CP=PC=C and hence

C, O
C= { 01 0] with respect tdH = Rar(P) ¢ Ker(P).

Then
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A -C, A%U@ﬂ 0

0=<A-C= .
{A;'Zr A2,

The matrix with operator entries if2.4) can be factored as

lrae) O || A1=Ci AV || lgap) O 2.5
0 APJIT'A? ke |l 0 A?] '
Note that by Kefl') D Ker(A,) or, equivalentlyRanI™) C Rar(A,), A—C and each of the factors
of (2.5) map the subspack’ =Rar(P) ® Rar(A,) into itself. Since diag Rar{p)Aé’z) regarded as an
operator ori{’, is symmetric and has dense range,C=0 implies that the middle term 2.5
regarded as an operator i is non-negative. By performing a Frobenius—Schur factorization of
this middle term, we findAlAT"A2<A;-C,, that is, C; < Al%(Igap~TT")AYZ or, equiva-
lently, C<D.
We thus proved thaA [P exists and has the matrix representation aiB). O
Remark 2.31f Ae E(H), E, is the spectral function of and A is a Borel subset dff0, 1],
then ALEA(A)=AEA(A). This is an immediate consequence of Theorem 2.2. The second to last
sentence in the proof of Theorem 2.2 can also be demonstrated by using the well-known fact that
any operator matrix of the form
{A B} 26
B" | '

is positive if and only ifA=0 andBB" <A.

Let A,Be&(H). By Ppg we denote the orthogonal projection onto the closure of
Rar(AY?) N Rar(B?). As mentioned in the introduction, the infimum problem for a finite dimen-
sional space{ was solved in Ref. 19 by showing thaf1B exists if and only ifALP, g and
BUP,g are comparable, and th&[IB is the smaller ofALIP,g and BOP,g. The following
proposition shows that for difi{ = the infimum problem foA andB can be reduced to the same
problem for the “smaller” operatolS[1P, g andBLP, g. In Sec. IV we will see that in this case
the infimum problem cannot be solved in the same fashion, as conjectured in Ref. 19.

Proposition 2.4: Let AB € £(H). Then AOB exists if and only ifALPA g) O(BOP, g) exists.

In this case AIB=(AOP,p) 0(BOPAg).

Proof: Note first that the operato’s[IP, g andBP,g exist, e.g., by Theorem 2.2.

Let us assume thdADP, g) O(BOP, ) exists and leC e £(H) be such thaC=<A,B, thus
we have RafCY?)CRanAY?)NRanBY)CRanPag) and hence C<P,g. Therefore, C
<A[OP,g and C<BOP,z and hence, by the majorization theorem as in Ref. G,
<(AOPAp) O(BOP,g). Taking into account thatA[IP, g) (B[P, g) <A, B it follows thatACB
exists and equalfAIP, g) O(BOPAp).

Conversely, let us assume thaflB exist. Then ALB=<P,g. This relation andAIB<A,B
give AOB=<A[OP,p, AOB<B0OPpp. Let Ce £(H) be such thaC<AOP,g, BOPAp. ThenC
<A, B, Pag and, in particularC<= ALB. (]

One may ask for which orthogonal projectioRexceptP, g the statement of Proposition 2.4
is true. It turns out thaP, g is the infimum of the set of those projectioRs

Theorem 2.5: Let A,B e £(H) such that AIB exists. Letll,g be the set of all orthogonal
projections subject to the properties th&[P) O(BOP) exists and ALOP) (BOP)=ALB. Then

HA,B:{P € P(H)|PA,B = P}

In order to prove the above stated proposition, we first consider the connection of parallel sum
with the infimum of quantum effectsee also Ref.)2 To see this, instead of giving the original
definition as in Ref. 8, we prefer to introduce the parallel sum of two quantum effects by means of
the characterization of Pekarev—ShmuIﬁ&n,
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((A:B)h,hy =inf{(Aa,a) + (Bb,b)|h=a+b},for all h € H. 2.7
Theorem 2.6:(Refs. 8 and 2DLet A,B e B(H)*. Then

() 0<A: B<A, B,

(i)  A:B=B:A,

(i) Rar((A:B)Y3=Rar(AY?) N RanB?),

(iv) if A;,B;e B(H)* are such that A<A; and B<B;, then AB<A;:By,
(v) if A+B is boundedly invertible, theffA: B||=A(A+B) !B,

(vi) If AN\ A and B,\/B strongly, then A B, A:B strongly

In view of the properties of the parallel sum listed above, a moment of thought shows that if
P,Q e P(H), that is,P andQ are orthogonal projections i, thenP[1Q over&(H) always exists
and coincides with the orthogonal projection onto M RanQ). By Theorem 4.3 in Ref. 8 we
also havePQ=2(P: Q).

Lemma 2.7: Let AB e £&(H) be such that AIB exists. Then

(i)  Rar((AOB)Y?)=Rar((A:B)*?),
(i)  (AOB)Y2=(A:B)Y2V for some boundedly invertible operatoreV3(H),
(i)  A:B<AOB= y(A:B), for somey>0.

Proof: Since AOB<A it follows that Rari(AOB)Y?) CRar(AY?). Similarly we have
Rar((AOB)Y2) Cc Ran(BY?), hence RaffAB)Y?) C Ran(A2) N Ran(BY?3)=Rar((A: B)1/?).

For the converse inclusion, note thatB<A andA:B<B; sinceA:B<A:I=A(A+])1<A.
Thus, by the definition ofA[IB, it follows that A:B<A[B. In particular, this proves that
Ran((AOB)Y?) D Rar((A:B)Y?), and hencdi) is proved.

The assertionsii) and (iii) are consequences @f and the majorization theorem as in Ref.

6. O
Lemma 2.8: If ABe &(H) and AOB exists, then AB<P,p and RanfAOB) is dense in
Ran(Pap).
Proof: This is a consequence of Theorem 2.6 and Lemma 2.7. O

We now come back to Theorem 2.5.

Proof of Theorem 2.5tet P e Il,g. ThenAOB<P and henceRanfAB) C Rar(P). There-
fore, by Lemma 2.8 RdRP,g) C Ran(P), that is,Pyg<P.

Assume thatP=P,pg. We claim that then(AOP)O(BOP) exists and it coincides with
(ADP,g) O(BOPAg). Evidently, (AQPAg) (BOP,g) <ADP,BOP. Let Ce&(H) with C
<AOP, BOP. ThenC=<AOB=P, and hence,

C=<(AOPpp) O(BOPpR).
Therefore,(AOP) O(BOP) exists and, by Proposition 2.4 it coincides wihiB. O

IIl. INFIMUM OF A QUANTUM EFFECT AND ITS NEGATION

Thenegation A of an effectA is defined to be the effeét’ =1 -A. Physically,A’ is the effect
A with its values 1 and 0 reversed. In the following we present a characterization of Auh&h
exists in&(H) in terms of the location of the spectrum Af The theorem essentially coincides
with the result of Ando(Ref. 2, Theorem R the difference consists on that we express the
condition with the help of the spectrum Afand the proof is based on the matrix representations
as in Sec. Il. There is also a similar characterization in Ref. 13.

Theorem 3.1:Let A be a quantum effect on the Hilbert spa¢eThen the following asser-
tions are equivalent:

() AO(I-A) exists

(i) o(A), the spectrum of Ais contained either i{o}U[2,1] or in [0,2]u{1},

(i)  AOPp _a and (I1-A)OP, -5 are comparable, that is, either AP, _o=<(1—A) 0P, Or
(I1=A)OPp 1_a<AOP4 |-
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In addition, if either of the above holds, lettingsgC([0, 1]) be the function

t) = min(t,1 -t) = b 0=t=j, 3.1
g(t) =min(t,1-t) = 1-t, ;< <1 (3.1

we have by continuous functional calculus (I -A)=g(A).

Proof: Let E, denote the spectral function éf In view of Proposition 2.4A0(1 -A) exists
if and only if (AOP;-a)O((1-A)0PA,-a) exists. A moment of thought shows th&, -
=Ea((0,1)) and hence, by Remark 2.3, we have tAdiP,,;_o=AEA((0,1)) and (I-A)OPa,-a
=(I-A)EA((0,1)). Thus, without restricting the generality, we can and will assume in the follow-
ing that 0 and 1 are not eigenvalues/AfNow, the equivalence dfii) with (iii) is a matter of
elementary spectral theory for selfadjoint operators, hence we will prove only the equivalence of
(i) and (ii).

To prove that(ii) implies (i), let us assume that(A) is contained either irﬁO}U[l,ﬂ orin
[0,2]U{1}. To make a choice, let us assume théd) C{0}U[%,1]. Since, by assumption, 0 is
not an eigenvalue oA, it follows that O'(A)Q[%,l]. ThenA=I1-A and clearlyAJ(I-A)=1-A
=g(A), where the functiorg is defined as in3.1). A similar argument holds in case we assume
o(A) cl0,2]U{1}; in this caseAD(1-A)=A=g(A).

Conversely, let us assume thafl(l-A)=D, the infimum ofA and|-A over £(H), exists.
Using the spectral measurg, of A, let E;=EA([0,1/2], A;=A|E;H, E,=EA((1/2,1)), A,
=A|E,H. We write D as an operator matrix with respect to the decompositorE, H ® E,H,

~ D, DY?rpl?
D3 D2 D, ‘

with contractivel’ € B(E,H,E;H), cf. Theorem 2.1. Sincg(A)<A, | —A, by the definition ofD
we have

| Di-A DYrpl?
0<D-gA=| (3.2

D3I"D? Dp-(1,-Ay

Therefore, 6= D,—-A; while taking into account thab <A it follows that D; <A, henceD,
=A,. Similarly, 0<D,—(l,—A,) and, sinceD=<I-A it follows D,<I,-A,, henceD,=1,—A,.
Thus, the main diagonal of the matrix (8.2) is null, hence(e.g., by Theorem 2)1it follows that
D=g(A).

Further, lete € (0,1/4), and consider the operators

E.1=En((e,~2+1/2), E,,=Ex(e+1/2,1-¢)). (3.3

DenoteE,=E, ;+E, , andA,=A|E,H. We show thatA, (1 -A,) exists. To see this, we remark
that, as proven beforg(A)=A(I-A), so we actually show thdd,=D|E,H=g(A,) coincides
with A,O(1-A,). Indeed, assume that for sofBge E(E,H) we haveC,<A,, | -A,. Then, letting
C=C.E, € &(H) it follows that C<A, I-A. SinceD=A(I-A) this impliesC=<D and hence
C.<D.. Therefore D, coincides withA,(1-A,).

We finally prove that(i) implies (ii). Assume tha{i) holds and(ii) is not true. Then there
existse € (0,1/4) such thate, ; #0 andE, ,# 0, where we use the notation as(B3). Letting

As,l:A|Ea,1Hv As,2:A|Ea,2H1

and d:8(1+\/§)_1, consider an arbitrary contractiohe B(E, ,/,E, ;7). In the following all
operator matrices are understood with respect to the decompoEitigi ® E, ;. Then, letting
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— lASrl_ dls,l \“J’§ d-r i| _ lAs,l_ Slg,l+ \’5 dls,l \%Cﬂ— :|
\"5 d-r* |8’2_A£'2_ dlsxz Vﬂg d-r* Ie,Z_As,2_8|8,2+ \’/5 dla,z
A1—el,1 O =1, T
= 17 ¢l +\'3d[ *,1 ] =0,
0 IS,Z_AE,Z_SIE:'Z T I8,2
we have

. -\3dT 00 la =BT
As -C= = * = +d - N =0
— \‘/3 dT 2As,2_ |8‘2 + d|8’2 0 2A£Y2_ Is,2 -2 dlg’z - \,”3T 3'8’2

and

Is,l_ 2As,1+ dls,l - \’§T:| _ |:Is,1_ 2As,l_ 2 dIE,l 0:| + d|:3l‘9,l - \’§Ti|
-\3dr dl, ., 0 0 —\3dT" 1>

=0.

I—As—C={

But, the operator

Is,l - \”§Tj|

A, 0(,-A,)) -C=g(A,)-C=d .
(A,D(,-A)-C=g(A,) [-\ET B

is not non-negative for some choicesTofunless at least one of the spectral projectigpg and
E, . is trivial. Sincee is arbitrarily small, it follows thatA cannot simultaneously have spectral
points in(0,1/2 and(1/2,1). Therefore (i) implies (ii). O

IV. TWO EXAMPLES

In this section we answer in the negative a question raised in Ref. 19. First we recall how the
problem of the existence of the infimum é&f and B in £(H) can be reduced to the infimum
problem for some quantum effects and their negations. Assume, in addition, tHat+&r=0.

Let f5.g be the affing(that is, linear on convex combination®mapping defined as in Ref. 9 by

fag{Cl0<C<A+B}— {D|0<D < Ppg}, (4.2

with C=(A+B)Y?f,,5(C)(A+B)¥2 By Theorem 2.2 in Ref. %,g is well defined. Sincéa,g is
an affine isomorphismA B exists if and only iff 5.g(A) Of o.5(B) exists. As

fasB(A) + fasp(B) = fag(A+B) = |

we are in the situation of Theorem 3.1.

Actually, the following more general fact holds.

Lemma 4.1: Let A& &(H), 0<C, D<A, and consider the mapping, fas defined in(4.1).
Then D exists if and only if £(C) OfA(D) exists and, in this case, we have

fA(COD) =fA(C) Ofa(D).
Proof: This is a consequence of Theorem 2.5 in Ref. 9. O
By Proposition 2.4, the infimum ok andB exists if and only if the infimum oAOP, g and
BOPAg exists or, equivalently, the infimum of the restrictioﬁs=ADPA,B| PagH and B
:=BOPag|PagH exists. Since Ke@+§):{0}, ADB exists if and only iff;é(ﬂ) Df;@(ﬁ) exists,
and for the pairf;@(ﬂ),f;@(ﬁ) we observe that Theorem 3.1 applies. Therefore, under the

additional assumptions that 0 and 1 are not eigenvaluéﬁ@(fz\) andf*A+”B(~B), ADB exists if and
only if AOP,g andBL0P, g are comparable; in this cas&[1B coincides with the smaller of the
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AOP,p and BOP,g. For a finite dimensional Hilbert space it was proven in Ref. 19 that the
infimum of the operator&\[1P, g andBLP, g exists if and only if they are comparable.

The next example shows that, contrary to the finite dimensional case, we may have two
guantum effectB; and B, for which B,B, exists, but(BlﬂPBle) and (BZDPBTBZ) are not
comparable.

Example 4.21 et H=L?-1,1] andA be the operator of multiplication with the square of the
independent variable o, (Ax)(t)=t>x(t), for all xe Lq-1,1]. ThenA is a non-negative con-
traction on, that is, a quantum effect, and the same is its square A84t that is, (A2)(t)
=[t|x(t), xe L7-1,1]. Note thatA, and henceéA'?, are injective.

Let 1 be the constant function equal to 1 ¢nal,1], 6(t):=sgnt), and y.:= %(11 0), the
characteristic functions di0, 1] and, respectively,—1,0]. All these functions are in?-1,1].
Note thatl and # span the same two dimensional spacevasDenote

Ho="H & spadl, b} ='H © spafx., x_}-

With respect to the decomposition

H=CleCéoa Ho

consider two quantum effecG, andC, on H defined by
0 0

Cl = 0 s C1: 0

o O O
o » O
O O
o O O

% %
2'0 210

wherel, is the identity operator oft{y. Clearly we haveC;+C,=I and letting
Bl - A1/2C1A1/2 BZ — A1/2C2A1/2

we have

B, +B,=A.

Comparing the spectra @; andC, and using Theorem 3.1, it follows th@f; (0C, exists, but
C, andC, are not comparable. Therefore, using Lemma 4.1, it follows BhaiB, exists, butB;
and B, are not comparable. In the following we will prove thfﬂsl,Bz:', that is,
Ran(BY?) NRan(B}?) is dense irH. We divide the proof in several steps.

Step 1: A?H, is dense irfH.

Indeed, letf e H=L7-1,1] be a function such that for ali, € H, we have

0 =(AY?h, ) = (ho, AY?f).

ThenAY?f is a linear combination of the functiodsand 6, that is, there exist scalatsand such
that

[t|f(t)=a+Bsgnt), te[-1,1]
and hence

a+f
—, 0<t=1,
a+ pBsgnt) t
1t B~
t

f(t) =

, —1=st<O.

Sincef e LY -1, 1] this shows thaf=0 and the claim is proven.
Let us consider the following linear manifolds #i:
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F:={f e L7~ 1,1]|f piecewise constaht

Fo={f e IO e>0s.t. fl[(—e,&)=0f,x.) =(f,xs) =0}.

Step 2:F, is dense inH,,.
Indeed, to see this, let us first note thB§C H,. If hy is an arbitrary vector ir{y and e
>0, there existg; e F such that

lhg— fll < g hencel(h - f1, x| < g. (4.2)
Moreover, there exist§, e F such that it is zero in a neighbourhood of zero and

I, —fall < . (4.3

oo™

Consequently,

lhg=foll < — and hence(hy = fo, xu)| < (4.4

Ao

£
4
Let

f3= 1+ 2x12,19(ho = 2, x4) + 2x-1,-12¢ho — T2, x2) -

Then, from the choice of; it follows

(fax) = (F2, x4) + (g — 2, x4) = (o, x4) =0
and

(fa, x> = (f2, x-) + (hg = f2, x-) =(ho, x-) = 0,
hencef; e F,. Finally, from (4.2), (4.3), and(4.4) we get

”ho_ f3|| = ”ho_ f]_” + ”fl_ f2|| + ||f2_ f3H =g,

and the claim is proven.

Finally, we prove the following.

Step 3: B g,=I, that i Rar(Bl’>) N Ran(B}?) is dense irfH.

In the following we are using the inverse operatot’ on its range. By the preceding claim,
AY2(A12F) is a linear submanifold ifi{, and dense in it. Since the restrictions@f andC, to
H, coincide with3l,, it follows that the linear manifold€,AY2(A™1F,) and C,AY%(A~1F) coin-
cide and are dense ir{,. Consequently, the linear manifold&?C,AY%(A"1F,) and
AY2C,AVZ( AL F) coincide and, by Step 1 and Step 2, they are densH.iThus, the linear
manifold,

L =B, (A™V2Fy) = By(AM2F,) C Rar(B,) N Ran(B,) C Rar(B;"*) N Rar(B3"),

is dense in{. This concludes the proof of the last step, and the example.

In order to explain the connection with the characterization of the existence of infimum
obtained by Ando in Ref. 2 we consider the comparisoMbiP, g with the generalized shorted
operator, as considered in Ref. 2.

Lemma 4.3: Let AB e £(H). Then, for any sequence, of positive numbers that converge
increasingly to infinity, we have

SO- lim(A:a,B) < APy, (4.5)

n—oo
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and the limit does not depend on the sequegg.

Proof: First note that the sequence of positive operafarg,B is nondecreasing and bounded
by A, cf. Ref. 8. Consequently, the strong operator limit exists and does not depend on the
sequencey, increasing to infinity. We thus can take,=n. Since the parallel sum is strongly
continuous in the second variable with respect to nondecreasing sequences, cf. Theorem 2.6, we
have A:nB<A and, since RaitA:nB)¥?)=Rar(AY?)NRan(B?) it follows A:nB<P,g and

hence(4.5) holds. O
Given two positive operatord and B, the generalized shorted operatpB]A is defined(see
Ref. 1) by

[BJA=lim A:(nB).
Nsoo
The main result in Ref. 2 states that the infim#hlB exists if and only[B]A and[A]B are
comparable and, in this cas&[IB is the smaller of A]B and[B]A. In view of this result and our
Example 4.2, it follows that, in genera.5 cannot be improved to equality. Here we have a
simpler example emphasizing this fact.

Example 4.41et H=L?[0,1] andA the operator of multiplication with the functiadd. Then
A is bounded, contractive, and positive. In additi®¥? is the operator of multiplication with the
independent variable Note that bothA and AY? are injective.

Further, letl be the function constant 1 ib’[0,1] and note that it does not belong to the
range of eitherA or A2 Let C be a non-negative contraction # with kernel C1 and define
B=AY2CAY2, Then the operatoB is injective and hence its range is dense % Since
RanB) CRar(BY? and, by construction, R&B)CRar(AY?) as well, it follows that
Ran(AY?) N Ran(B'?) is dense inH, henceP,g=I.

For eachn=1 consider the function, € L0, 1] defined by

= 0, 0<t<1/n,
YT Un<t=1.

Note thatAl’zvn:X(l,nyl], the characteristic function of the intervél/n,t]. Taking into account
that the sequence of functiong,, ;; converges in norm to the functidh it follows that

(Bup,vn =(CAY2,, AY% ) = (Cx(an.13 Xama) — (CL,1) = 0.

Let o, be a sequence of positive numbers increasing ®oand such thatw,(Bv,,Bv,)
converges to 0. It is easy to see that this is always possible. Then using the characterization of the
parallel sum as in Theorem 2(@i), for arbitraryn=m>2 we have

(A B)v v = Inf{{Au,u) + an(Bv,v)|vm= U+ v} =iInf{{A(y—v),vm—v) + an(Bv,v)|v € H}
= inf{{Avm,vm — 2 REAV,v) + {Av,v) + an(Bu,v)|v € H} < (Avm v
1 2 1
-2 REAU, U + (Avp v + an(Bug,up) =1 0 2+ - +1 - + a(Bun,vp)

1 1 1
=n—1—a+an(an,vn)Hn—1< > asn— o,

On the other hand,

(Avm Ay =1-

=

S+
N

Hence, we have strict inequality i@.5).
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