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The quantum effects for a physical system can be described by the setEsHd of
positive operators on a complex Hilbert spaceH that are bounded above by the
identity operator. While a general effect may be unsharp, the collection of sharp
effects is described by the set of orthogonal projectionsPsHd#EsHd. Under the
natural order,EsHd becomes a partially ordered set that is not a lattice if dimH
ù2. A physically significant and useful characterization of the pairsA,BPEsHd
such that the infimumA∧B exists is called the infimum problem. We show that
A∧ P exists for allAPEsHd, PPPsHd and give an explicit expression forA∧ P.
We also give a characterization of whenA∧ sI −Ad exists in terms of the location of
the spectrum ofA. We present a counterexample which shows that a recent con-
jecture concerning the infimum problem is false. Finally, we compare our results
with the work of Ando on the infimum problem. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1904704g

I. INTRODUCTION

A quantum mechanical measurement with just two values 1 and 0sor yes and nod is called a
quantum effect. These elementary measurements play an important role in the foundations of
quantum mechanics and quantum measurement theory.3–5,7,14,16,18We shall follow the Hilbert
space model for quantum mechanics in which effects are represented by positive operators on a
complex Hilbert spaceH that are bounded above by the identity operatorI. In this way the set of
effectsEsHd becomes

EsHd = hA P BsHd:0 ø A ø Ij.

The set of orthogonal projectionsPsHd#EsHd corresponds to sharp effects while a generalA
PEsHd may be unsharpsfuzzy, imprecised. Employing the usual orderAøB for the set of
bounded self-adjoint operatorsSsHd on H, we see thatsEsHd , ø d is a partially ordered set. It is
well known thatsEsHd , ø d is not a lattice if dimHù2. However, if the infimumA∧B of A,B
PEsHd exists thenA∧B has the important property of being the largest effect that physically
implies bothA and B. It would thus be of interest to give a physically significant and useful
characterization of whenA∧B exists. This so-called infimum problem has been considered for at
least 10 years.2,10–12,17,19

Before discussing the progress that has been made toward solving the infimum problem, let us
compare the situation with that of the partially ordered setsSsHd , ø d. Of course, if A,B
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PSsHd are comparable, that is,AøB or BøA, thenA∧B exists and is the smaller of the two. A
surprising result of Kadison15 states that the converse holds. Thus, forA,BPSsHd, A∧B exists in
SsHd if and only if A andB are comparable. We conclude thatsSsHd , ø d is an antilattice which
is as far from being a lattice as possible. The situation is quite different insEsHd , ø d. In fact it is
well known thatP∧Q exists inEsHd for all P,QPPsHd. More generally, we shall show that
A∧ P exists inEsHd for all APEsHd, PPPsHd and give an explicit expression forA∧ P. The
existence ofA∧ P has already been proved in Ref. 18 but we present a different proof here.

For A,BPEsHd let PA,B be the orthogonal projection onto the closure of
RansA1/2dùRansB1/2d. It is shown in Ref. 19 that if dimH,` thenA∧B exists inEsHd if and
only if A∧ PA,B andB∧ PA,B are comparable and in this caseA∧B is the smaller of the two. This
was considered to be a solution to the infimum problem for the case dimH,` and it was
conjectured in Ref. 19 that this result also holds in general. One of our main results is that this
conjecture is false. We shall present an example of a pairA,BPEsHd with dim H=` for which
A∧B exists inEsHd but A∧ PA,B and B∧ PA,B are not comparable. In addition, we prove that,
assumingA∧B exists,PA,B is the smallest of all orthogonal projectionsP having the property that
sA∧ Pd∧ sB∧ Pd exists andsA∧ Pd∧ sB∧ Pd=A∧B. Combined with the counter-example as de-
scribed before, this means that, in the infinite dimensional case, there is no orthogonal projection
to replacePA,B and have a positive solution to the infimum problem.

Thenegation A8 of an effectA is defined to be the effectA8= I −A. Physically,A8 is the effect
A with its values 1 and 0 reversed. We also present a simple spectral characterization of when
A∧A8 exists inEsHd. The result is essentially the same as Theorem 2 in Ref. 2, with the difference
that we express the condition in terms of the location of the spectrum ofA and the proof is based
on the matrix representations obtained in the preceding section.

Ando has given a solution to the infimum problem in terms of a generalized shorted operator.2

However, in our opinion, these shorted operators do not have a physical significance in contrast to
the operationally defined operatorsA∧ PA,B and B∧ PA,B. Finally, we discuss the relationship
between our work and that of Ando. First, we show that the shorted operator ofA by B is always
smaller thanA∧ PA,B. Actually, it is the fact, that in the infinite dimensional case, the shorted
operator ofA by B can be strictly smaller thanA∧ PA,B, that is responsible for the failure of a
solution of the infimum problem similar to the finite dimensional case. This can be viewed from
the counter-example as before, but we record also a simpler one that illustrates this situation.

We now briefly discuss connections between the infimum problem and physics. Quantum
effects have been studied by mathematicians and physicists for over 40 years.5,16,17 Besides the
applications of effect-valued measures in quantum measurement theory, many researchers consider
effects to be the basic elements of important quantum structures. In recent times quantum effects
have been organized into a structure called an effect algebra7,10 and their order properties have
been studied.11,12,17Among other things, the effect algebraEsHd is a partially ordered set and if
A∧B exists for A,B, PEsHd, then this effect has important physical properties. In particular,
among all the effects that have a smaller probability of occurring than bothA andB, A∧B has the
largest probability. Thus ifA∧B exists, thenA∧B has a crucial physical significance. In the case
whereA andB are sharp,A andB are projections,A∧B always exists and is the projection onto
the intersection of their ranges. But ifA andB are not sharp, the situation is much more compli-
cated. An interesting special case is whenAPEsHd andPPPsHd. In this caseA∧ P always exists
and if A andP commutesare compatibled thenA∧ P=AP. However, ifA andP do not commute
an explicit closed form expression forA∧ P has been difficult to obtain and is now presented in
Theorem 2.2. We can now define conditional probabilities

probsAuPd = probsA ∧ Pd/probsPd

and conditional measurements and these may have useful physical applications. Finally, our Ex-
ample 4.2 gives a surprising phenomenon that does not occur in finite dimensional Hilbert spaces.
The existence of effects such as those in this example may have interesting physical significance.
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II. INFIMUM OF A QUANTUM EFFECT AND A SHARP EFFECT

We first record a parametrization of bounded positive 232 matrices with operator entries, in
terms of operator balls.

In the following we make use of theFrobenius-Schur factorization: for T, X, Y, Z bounded
operators on appropriate spaces andT boundedly invertible, we have

FT X

Y Z
G = F I 0

YT−1 I
GFT 0

0 Z − YT−1X
GF I T−1X

0 I
G . s2.1d

For instance, by using Frobenius–Schur factorizations and a perturbation argument one can obtain
the following classical result of Shmulyan.21

Theorem 2.1: Let APBsHd be self-adjoint andH=H1 % H2 an orthogonal decomposition of
H. Then Aù0 if and only if it has a matrix representation of the following form:

A = F A1 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G with respect toH = H1 % H2, s2.2d

where A1PBsH1d+, A2PBsH2d+, and GPBsH2,H1d is contractive.
In addition, the operatorG can be chosen in such a way thatKersGd$KersA2d and

KersG*d$KersA1d, and in this case it is unique.
For two effectsA,BPEsHd we denote byA∧B, the infimum, equivalently, thegreatest lower

bound, of A andB over the partially ordered setsEsHd , ø d, if it exists. To be more precise,A∧B
is an operator inEsHd uniquely determined by the following properties:A∧BøA, A∧BøB, and
an arbitrary operatorDPEsHd satisfies bothDøA and DøB if and only if DøA∧B. Charac-
terizations of the existence of infimum for positive operators have been obtained for the finite-
dimensional case in Ref. 19, and in general in Ref. 2.

In Theorem 4.4 of Ref. 19 it is proved that the infimumA∧ P exists for anyAPEsHd and
PPPsHd. As a consequence of Theorem 2.1 we can obtain an explicit description ofA∧ P,
together with another proof of the existence.

Theorem 2.2:For any APEsHd and PPPsHd the infimum A∧ P exists, more precisely, if A
has the matrix representation as ins2.2d with respect to the orthogonal decompositionH
=RansPd % KersPd, where A1PEsRansPdd, A2PEsKersPdd, and GPBsKersPd, RansPdd, with
iGiø1, KersGd$KersA2d and KersG*d$KersA1d, then

A ∧ P = FA1
1/2sI − GG*dA1

1/2 0

0 0
G with respect toH = RansPd % KersPd. s2.3d

Proof: Let APEsHd andPPPsHd. In the following we consider the orthogonal decomposi-
tion H=RansPd % KersPd. By Theorem 2.1A has a matrix representation as ins2.2d, with A1

PBsRansPdd+, A2PBsKersPdd+, andGPBsKersPd ,RansPdd, with iGiø1, KersGd$KersA2d and
KersG*d$KersA1d. SinceAø I it follows that A1ø IRansPd andA2ø IKersPd. Consider the operator
DPBsHd, defined by the matrix ins2.3d. Clearly 0øDø P, in particularDPEsHd. In addition,

A − D = FA1
1/2GG*A1

1/2 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G = fG*A1

1/2A2
1/2g*fG*A1

1/2A2
1/2g ù 0,

henceAùD.
Let CPEsHd be such thatCøA, P. From Cø P it follows that CP=PC=C and hence

C = FC1 0

0 0
G with respect toH = RansPd % KersPd.

Then
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0 ø A − C = F A1 − C1 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G . s2.4d

The matrix with operator entries ins2.4d can be factored as

FIRansPd 0

0 A2
1/2GFA1 − C1 A1

1/2G

G*A1
1/2 IKersPd

GFIRansPd 0

0 A2
1/2G . s2.5d

Note that by KersGd$KersA2d or, equivalently,RansG*d#RansA2d, A−C and each of the factors
of s2.5d map the subspaceH8=RansPd % RansA2d into itself. Since diagsIRansPdA2

1/2d regarded as an
operator onH8, is symmetric and has dense range,A−Cù0 implies that the middle term ins2.5d
regarded as an operator inH8 is non-negative. By performing a Frobenius–Schur factorization of
this middle term, we findA1

1/2GG*A1
1/2øA1−C1, that is, C1øA1

1/2sIRansPd−GG*dA1
1/2, or, equiva-

lently, CøD.
We thus proved thatA∧ P exists and has the matrix representation as ins2.3d. h

Remark 2.3:If APEsHd, EA is the spectral function ofA andD is a Borel subset off0, 1g,
then A∧EAsDd=AEAsDd. This is an immediate consequence of Theorem 2.2. The second to last
sentence in the proof of Theorem 2.2 can also be demonstrated by using the well-known fact that
any operator matrix of the form

F A B

B* I
G s2.6d

is positive if and only ifAù0 andBB* øA.
Let A,BPEsHd. By PA,B we denote the orthogonal projection onto the closure of

RansA1/2dùRansB1/2d. As mentioned in the introduction, the infimum problem for a finite dimen-
sional spaceH was solved in Ref. 19 by showing thatA∧B exists if and only ifA∧ PA,B and
B∧ PA,B are comparable, and thatA∧B is the smaller ofA∧ PA,B and B∧ PA,B. The following
proposition shows that for dimH=` the infimum problem forA andB can be reduced to the same
problem for the “smaller” operatorsA∧ PA,B andB∧ PA,B. In Sec. IV we will see that in this case
the infimum problem cannot be solved in the same fashion, as conjectured in Ref. 19.

Proposition 2.4: Let A,BPEsHd. Then A∧B exists if and only ifsA∧ PA,Bd∧ sB∧ PA,Bd exists.
In this case A∧B=sA∧ PA,Bd∧ sB∧ PA,Bd.

Proof: Note first that the operatorsA∧ PA,B andB∧ PA,B exist, e.g., by Theorem 2.2.
Let us assume thatsA∧ PA,Bd∧ sB∧ PA,Bd exists and letCPEsHd be such thatCøA,B, thus

we have RansC1/2d#RansA1/2dùRansB1/2d#RansPA,Bd and hence Cø PA,B. Therefore, C
øA∧ PA,B and CøB∧ PA,B and hence, by the majorization theorem as in Ref. 6,C
ø sA∧ PA,Bd∧ sB∧ PA,Bd. Taking into account thatsA∧ PA,Bd∧ sB∧ PA,BdøA,B it follows thatA∧B
exists and equalssA∧ PA,Bd∧ sB∧ PA,Bd.

Conversely, let us assume thatA∧B exist. Then,A∧Bø PA,B. This relation andA∧BøA,B
give A∧BøA∧ PA,B, A∧BøB∧ PA,B. Let CPEsHd be such thatCøA∧ PA,B, B∧ PA,B. ThenC
øA, B, PA,B and, in particular,CøA∧B. h

One may ask for which orthogonal projectionsP exceptPA,B the statement of Proposition 2.4
is true. It turns out thatPA,B is the infimum of the set of those projectionsP.

Theorem 2.5: Let A,BPEsHd such that A∧B exists. LetPA,B be the set of all orthogonal
projections subject to the properties thatsA∧ Pd∧ sB∧ Pd exists andsA∧ Pd∧ sB∧ Pd=A∧B. Then

PA,B = hP P PsHduPA,B ø Pj.

In order to prove the above stated proposition, we first consider the connection of parallel sum
with the infimum of quantum effectsssee also Ref. 2d. To see this, instead of giving the original
definition as in Ref. 8, we prefer to introduce the parallel sum of two quantum effects by means of
the characterization of Pekarev–Shmulyan,20
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ksA:Bdh,hl = infhkAa,al + kBb,bluh = a + bj,for all h P H. s2.7d

Theorem 2.6: sRefs. 8 and 20d Let A,BPBsHd+. Then

sid 0øA: BøA, B,
sii d A:B=B:A,
siii d RanssA:Bd1/2d=RansA1/2dùRansB1/2d,
sivd if A1,B1PBsHd+ are such that AøA1 and BøB1, then A:BøA1:B1,
svd if A+B is boundedly invertible, theniA:Bi=AsA+Bd−1B,
svid If An↘A and Bn↘B strongly, then An:Bn↘A:B strongly.

In view of the properties of the parallel sum listed above, a moment of thought shows that if
P,QPPsHd, that is,P andQ are orthogonal projections inH, thenP∧Q overEsHd always exists
and coincides with the orthogonal projection onto RansPdùRansQd. By Theorem 4.3 in Ref. 8 we
also haveP∧Q=2sP:Qd.

Lemma 2.7: Let A,BPEsHd be such that A∧B exists. Then

sid RanssA∧Bd1/2d=RanssA:Bd1/2d,
sii d sA∧Bd1/2=sA:Bd1/2V for some boundedly invertible operator VPBsHd,
siii d A:BøA∧BøgsA:Bd, for someg.0.

Proof: Since A∧BøA it follows that RanssA∧Bd1/2d#RansA1/2d. Similarly we have
RanssA∧Bd1/2d#RansB1/2d, hence RanssA∧Bd1/2d#RansA1/2dùRansB1/2d=RanssA:Bd1/2d.

For the converse inclusion, note thatA:BøA andA:BøB; sinceA:BøA: I =AsA+ Id−1øA.
Thus, by the definition ofA∧B, it follows that A:BøA∧B. In particular, this proves that
RanssA∧Bd1/2d$RanssA:Bd1/2d, and hencesid is proved.

The assertionssii d and siii d are consequences ofsid and the majorization theorem as in Ref.
6. h

Lemma 2.8: If A,BPEsHd and A∧B exists, then A∧Bø PA,B and RansA∧Bd is dense in
RansPA,Bd.

Proof: This is a consequence of Theorem 2.6 and Lemma 2.7. h

We now come back to Theorem 2.5.
Proof of Theorem 2.5:Let PPPA,B. ThenA∧Bø P and henceRansA∧Bd#RansPd. There-

fore, by Lemma 2.8 RansPA,Bd#RansPd, that is,PA,Bø P.
Assume thatPù PA,B. We claim that thensA∧ Pd∧ sB∧ Pd exists and it coincides with

sA∧ PA,Bd∧ sB∧ PA,Bd. Evidently, sA∧ PA,Bd∧ sB∧ PA,BdøA∧ P,B∧ P. Let CPEsHd with C
øA∧ P, B∧ P. ThenCøA∧Bø PA,B and hence,

C ø sA ∧ PA,Bd ∧ sB ∧ PA,Bd.

Therefore,sA∧ Pd∧ sB∧ Pd exists and, by Proposition 2.4 it coincides withA∧B. h

III. INFIMUM OF A QUANTUM EFFECT AND ITS NEGATION

Thenegation A8 of an effectA is defined to be the effectA8= I −A. Physically,A8 is the effect
A with its values 1 and 0 reversed. In the following we present a characterization of whenA∧A8
exists inEsHd in terms of the location of the spectrum ofA. The theorem essentially coincides
with the result of AndosRef. 2, Theorem 2d, the difference consists on that we express the
condition with the help of the spectrum ofA and the proof is based on the matrix representations
as in Sec. II. There is also a similar characterization in Ref. 13.

Theorem 3.1: Let A be a quantum effect on the Hilbert spaceH. Then the following asser-
tions are equivalent:

sid A∧ sI −Ad exists,
sii d ssAd, the spectrum of A, is contained either inh0jøf 1

2 ,1g or in f0, 1
2
gø h1j,

siii d A∧ PA,I−A and sI −Ad∧ PA,I−A are comparable, that is, either A∧ PA,I−Aø sI −Ad∧ PA,I−A or
sI −Ad∧ PA,I−AøA∧ PA,I−A.
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In addition, if either of the above holds, letting gPCsf0,1gd be the function

gstd = minst,1 − td =Ht, 0 ø t ø
1
2 ,

1 − t, 1
2 ø t ø 1,

J s3.1d

we have, by continuous functional calculus, A∧ sI −Ad=gsAd.
Proof: Let EA denote the spectral function ofA. In view of Proposition 2.4,A∧ sI −Ad exists

if and only if sA∧ PA,I−Ad∧ ssI −Ad∧ PA,I−Ad exists. A moment of thought shows thatPA,I−A

=EAss0,1dd and hence, by Remark 2.3, we have thatA∧ PA,I−A=AEAss0,1dd and sI −Ad∧ PA,I−A

=sI −AdEAss0,1dd. Thus, without restricting the generality, we can and will assume in the follow-
ing that 0 and 1 are not eigenvalues ofA. Now, the equivalence ofsii d with siii d is a matter of
elementary spectral theory for selfadjoint operators, hence we will prove only the equivalence of
sid and sii d.

To prove thatsii d implies sid, let us assume thatssAd is contained either inh0jøf 1
2 ,1g or in

f0, 1
2
gøh1j. To make a choice, let us assume thatssAd# h0jøf 1

2 ,1g. Since, by assumption, 0 is
not an eigenvalue ofA, it follows that ssAd#f 1

2 ,1g. ThenAù I −A and clearlyA∧ sI −Ad= I −A
=gsAd, where the functiong is defined as ins3.1d. A similar argument holds in case we assume
ssAd#f0, 1

2
gøh1j; in this caseA∧ sI −Ad=A=gsAd.

Conversely, let us assume thatA∧ sI −Ad=D, the infimum ofA and I −A over EsHd, exists.
Using the spectral measureEA of A, let E1=EAsf0,1/2g, A1=AuE1H, E2=EAss1/2,1gd, A2

=AuE2H. We writeD as an operator matrix with respect to the decompositionH=E1H % E2H,

D = F D1 D1
1/2GD2

1/2

D2
1/2G*D1

1/2 D2
G ,

with contractiveGPBsE2H ,E1Hd, cf. Theorem 2.1. SincegsAdøA, I −A, by the definition ofD
we have

0 ø D − gsAd = F D1 − A1 D1
1/2GD2

1/2

D2
1/2G*D1

1/2 D2 − sI2 − A2d G . s3.2d

Therefore, 0øD1−A1 while taking into account thatDøA it follows that D1øA1, henceD1

=A1. Similarly, 0øD2−sI2−A2d and, sinceDø I −A it follows D2ø I2−A2, henceD2= I2−A2.
Thus, the main diagonal of the matrix ins3.2d is null, hencese.g., by Theorem 2.1d it follows that
D=gsAd.

Further, let«P s0,1/4d, and consider the operators

E«,1 = EAss«,− « + 1/2dd, E«,2 = EAss« + 1/2,1 −«dd. s3.3d

DenoteE«=E«,1+E«,2 andA«=AuE«H. We show thatA«∧ sI −A«d exists. To see this, we remark
that, as proven before,gsAd=A∧ sI −Ad, so we actually show thatD«=D uE«H=gsA«d coincides
with A«∧ sI −A«d. Indeed, assume that for someC«PEsE«Hd we haveC«øA«, I −A«. Then, letting
C=C«E«PEsHd it follows that CøA, I −A. SinceD=A∧ sI −Ad this implies CøD and hence
C«øD«. Therefore,D« coincides withA«∧ sI −A«d.

We finally prove thatsid implies sii d. Assume thatsid holds andsii d is not true. Then there
exists«P s0,1/4d such thatE«,1Þ0 andE«,2Þ0, where we use the notation as ins3.3d. Letting

A«,1 = AuE«,1H, A«,2 = AuE«,2H,

and d=«s1+Î3d−1, consider an arbitrary contractionTPBsE«,2H ,E«,1Hd. In the following all
operator matrices are understood with respect to the decompositionE«,1H % E«,2H. Then, letting
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C = FA«,1 − dI«,1 Î3 dT

Î3 dT* I«,2 − A«,2 − dI«,2
G = FA«,1 − «I«,1 + Î3 dI«,1

Î3dT

Î3 dT* I«,2 − A«,2 − «I«,2 + Î3 dI«,2
G

= FA«,1 − «I«,1 0

0 I«,2 − A«,2 − «I«,2
G + Î3dFI«,1 T

T* I«,2
G ù 0,

we have

A« − C = FdI«,1 − Î3 dT

− Î3 dT* 2A«,2 − I«,2 + dI«,2
G = F0 0

0 2A«,2 − I«,2 − 2 dI«,2
G + dFI«,1 − Î3T

− Î3T* 3I«,2
G ù 0

and

I − A« − C = FI«,1 − 2A«,1 + dI«,1 − Î3T

− Î3 dT* dI«,2
G = FI«,1 − 2A«,1 − 2 dI«,1 0

0 0
G + dF3I«,1 − Î3T

− Î3 dT* I«,2
G

ù 0.

But, the operator

sA« ∧ sI« − A«dd − C = gsA«d − C = dFI«,1 − Î3T

− Î3T* I«,2
G

is not non-negative for some choices ofT, unless at least one of the spectral projectionsE«,1 and
E«,2 is trivial. Since« is arbitrarily small, it follows thatA cannot simultaneously have spectral
points in s0,1/2d and s1/2,1d. Therefore,sid implies sii d. h

IV. TWO EXAMPLES

In this section we answer in the negative a question raised in Ref. 19. First we recall how the
problem of the existence of the infimum ofA and B in EsHd can be reduced to the infimum
problem for some quantum effects and their negations. Assume, in addition, that KersA+Bd=0.
Let fA+B be the affinesthat is, linear on convex combinationsd mapping defined as in Ref. 9 by

fA+B:hCu0 ø C ø A + Bj → hDu0 ø D ø PA+Bj, s4.1d

with C=sA+Bd1/2fA+BsCdsA+Bd1/2. By Theorem 2.2 in Ref. 9,fA+B is well defined. SincefA+B is
an affine isomorphism,A∧B exists if and only iffA+BsAd∧ fA+BsBd exists. As

fA+BsAd + fA+BsBd = fA+BsA + Bd = I

we are in the situation of Theorem 3.1.
Actually, the following more general fact holds.
Lemma 4.1: Let APEsHd, 0øC, DøA, and consider the mapping fA as defined ins4.1d.

Then C∧D exists if and only if fAsCd∧ fAsDd exists and, in this case, we have

fAsC ∧ Dd = fAsCd ∧ fAsDd.

Proof: This is a consequence of Theorem 2.5 in Ref. 9. h

By Proposition 2.4, the infimum ofA andB exists if and only if the infimum ofA∧ PA,B and

B∧ PA,B exists or, equivalently, the infimum of the restrictionsÃªA∧ PA,Bu PA,BH and B̃

ªB∧ PA,Bu PA,BH exists. Since KersÃ+B̃d=h0j, Ã∧ B̃ exists if and only iff Ã+B̃sÃd∧ f Ã+B̃sB̃d exists,

and for the pairf Ã+B̃sÃd , f Ã+B̃sB̃d we observe that Theorem 3.1 applies. Therefore, under the

additional assumptions that 0 and 1 are not eigenvalues off Ã+B̃sÃd and f Ã+B̃sB̃d, Ã∧ B̃ exists if and
only if A∧ PA,B andB∧ PA,B are comparable; in this case,A∧B coincides with the smaller of the
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A∧ PA,B and B∧ PA,B. For a finite dimensional Hilbert space it was proven in Ref. 19 that the
infimum of the operatorsA∧ PA,B andB∧ PA,B exists if and only if they are comparable.

The next example shows that, contrary to the finite dimensional case, we may have two
quantum effectsB1 and B2 for which B1∧B2 exists, butsB1∧ PB1,B2

d and sB2∧ PB1,B2
d are not

comparable.
Example 4.2:Let H=L2f−1,1g andA be the operator of multiplication with the square of the

independent variable onH, sAxdstd= t2xstd, for all xPL2f−1,1g. ThenA is a non-negative con-
traction onH, that is, a quantum effect, and the same is its square rootA1/2, that is, sA1/2xdstd
= utuxstd, xPL2f−1,1g. Note thatA, and henceA1/2, are injective.

Let 1 be the constant function equal to 1 onf−1,1g, ustdªsgnstd, and x±ª
1
2s1±ud, the

characteristic functions off0, 1g and, respectively,f−1,0g. All these functions are inL2f−1,1g.
Note that1 andu span the same two dimensional space asx±. Denote

H0 = H * spanh1,uj = H * spanhx+,x−j.

With respect to the decomposition

H = C1 % C u % H0

consider two quantum effectsC1 andC2 on H defined by

C1 = 30 0 0

0 1 0

0 0 1
2I0

4, C1 = 31 0 0

0 0 0

0 0 1
2I0

4 ,

whereI0 is the identity operator onH0. Clearly we haveC1+C2= I and letting

B1 = A1/2C1A
1/2, B2 = A1/2C2A

1/2,

we have

B1 + B2 = A.

Comparing the spectra ofC1 andC2 and using Theorem 3.1, it follows thatC1∧C2 exists, but
C1 andC2 are not comparable. Therefore, using Lemma 4.1, it follows thatB1∧B2 exists, butB1

and B2 are not comparable. In the following we will prove thatPB1,B2
= I, that is,

RansB1
1/2dùRansB2

1/2d is dense inH. We divide the proof in several steps.
Step 1: A1/2H0 is dense inH.
Indeed, letf PH=L2f−1,1g be a function such that for allh0PH0 we have

0 = kA1/2h0, fl = kh0,A
1/2fl.

ThenA1/2f is a linear combination of the functions1 andu, that is, there exist scalarsa andb such
that

utufstd = a + b sgnstd, t P f− 1,1g

and hence

fstd =
a + b sgnstd

utu
=5

a + b

t
, 0 , t ø 1,

b − a

t
, − 1 ø t , 0.6

Since f PL2f−1,1g this shows thatf =0 and the claim is proven.
Let us consider the following linear manifolds inH:
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F ª hf P L2f− 1,1guf piecewise constantj,

F0 ª hf P Fu ∃ « . 0 s . t . f us− «,«d = 0,kf,x−l = kf,x+l = 0j.

Step 2:F0 is dense inH0.
Indeed, to see this, let us first note thatF0,H0. If h0 is an arbitrary vector inH0 and «

.0, there existsf1PF such that

ih0 − f1i ø
«

8
henceukh0 − f1,x±lu ø

«

8
. s4.2d

Moreover, there existsf2PF such that it is zero in a neighbourhood of zero and

i f1 − f2i ø
«

8
. s4.3d

Consequently,

ih0 − f2i ø
«

4
and henceukh0 − f2,x±lu ø

«

4
. s4.4d

Let

f3 = f2 + 2xf1/2,1gkh0 − f2,x+l + 2xf−1,−1/2gkh0 − f2,x−l.

Then, from the choice off2 it follows

kf3,x+l = kf2,x+l + kh0 − f2,x+l = kh0,x+l = 0

and

kf3,x−l = kf2,x−l + kh0 − f2,x−l = kh0,x−l = 0,

hencef3PF0. Finally, from s4.2d, s4.3d, ands4.4d we get

ih0 − f3i ø ih0 − f1i + i f1 − f2i + i f2 − f3i ø «,

and the claim is proven.
Finally, we prove the following.
Step 3: PB1,B2

= I, that is, RansB1
1/2dùRansB2

1/2d is dense inH.
In the following we are using the inverse operatorA−1/2 on its range. By the preceding claim,

A1/2sA−1/2F0d is a linear submanifold inH0 and dense in it. Since the restrictions ofC1 andC2 to
H0 coincide with 1

2I0, it follows that the linear manifoldsC1A
1/2sA−1F0d andC2A

1/2sA−1F0d coin-
cide and are dense inH0. Consequently, the linear manifoldsA1/2C1A

1/2sA−1F0d and
A1/2C2A

1/2sA−1F0d coincide and, by Step 1 and Step 2, they are dense inH. Thus, the linear
manifold,

L = B1sA−1/2F0d = B2sA−1/2F0d # RansB1d ù RansB2d # RansB1
1/2d ù RansB2

1/2d,

is dense inH. This concludes the proof of the last step, and the example.
In order to explain the connection with the characterization of the existence of infimum

obtained by Ando in Ref. 2 we consider the comparison ofA∧ PA,B with the generalized shorted
operator, as considered in Ref. 2.

Lemma 4.3: Let A,BPEsHd. Then, for any sequencean of positive numbers that converge
increasingly to infinity, we have

SO- lim
n→`

sA:anBd ø A ∧ PA,B, s4.5d
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and the limit does not depend on the sequencesand.
Proof: First note that the sequence of positive operatorsA:anB is nondecreasing and bounded

by A, cf. Ref. 8. Consequently, the strong operator limit exists and does not depend on the
sequencean increasing to infinity. We thus can takean=n. Since the parallel sum is strongly
continuous in the second variable with respect to nondecreasing sequences, cf. Theorem 2.6, we
have A:nBøA and, since RanssA:nBd1/2d=RansA1/2dùRansB1/2d it follows A:nBø PA,B and
hences4.5d holds. h

Given two positive operatorsA andB, thegeneralized shorted operatorfBgA is definedssee
Ref. 1d by

fBgA = lim
n→`

A:snBd.

The main result in Ref. 2 states that the infimumA∧B exists if and onlyfBgA and fAgB are
comparable and, in this case,A∧B is the smaller offAgB andfBgA. In view of this result and our
Example 4.2, it follows that, in general,s4.5d cannot be improved to equality. Here we have a
simpler example emphasizing this fact.

Example 4.4:Let H=L2f0,1g andA the operator of multiplication with the functiont2. Then
A is bounded, contractive, and positive. In addition,A1/2 is the operator of multiplication with the
independent variablet. Note that bothA andA1/2 are injective.

Further, let1 be the function constant 1 inL2f0,1g and note that it does not belong to the
range of eitherA or A1/2. Let C be a non-negative contraction inH with kernel C1 and define
B=A1/2CA1/2. Then the operatorB is injective and hence its range is dense inH. Since
RansBd#RansB1/2d and, by construction, RansBd#RansA1/2d as well, it follows that
RansA1/2dùRansB1/2d is dense inH, hencePA,B= I.

For eachnù1 consider the functionvnPL2f0,1g defined by

vnstd = H0, 0ø t ø 1/n,

1/t 1/n , t ø 1.
J

Note thatA1/2vn=xs1/n,1g, the characteristic function of the intervals1/n,tg. Taking into account
that the sequence of functionsxs1/n,1g converges in norm to the function1, it follows that

kBvn,vnl = kCA1/2vn,A
1/2vnl = kCxs1/n,1g,xs1/n,1gl → kC1,1l = 0.

Let an be a sequence of positive numbers increasing to +` and such thatankBvn,Bvnl
converges to 0. It is easy to see that this is always possible. Then using the characterization of the
parallel sum as in Theorem 2.6.svid, for arbitrarynùm.2 we have

ksA:anBdvmvml = infhkAu,ul + ankBv,vluvm = u + vj = infhkAsvm − vd,vm − vl + ankBv,vluv P Hj

= infhkAvm,vml − 2 RekAvm,vl + kAv,vl + ankBv,vluv P Hj ø kAvm,vml

− 2 RekAvm,vnl + kAvn,vnl + ankBvn,vnl = 1 −
1

m
− 2 +

2

m
+ 1 −

1

n
+ ankBvn,vnl

=
1

m
−

1

n
+ ankBvn,vnl → 1

m
,

1

2
asn → `.

On the other hand,

kAvm,Avml = 1 −
1

m
ù

1

2
.

Hence, we have strict inequality ins4.5d.
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