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Abstract

In this paper, we investigate the relative performance of Value-at-Risk (VaR) models with the daily stock market returns of

nine different emerging markets. In addition to well-known modeling approaches, such as variance–covariance method and

historical simulation, we study the extreme value theory (EVT) to generate VaR estimates and provide the tail forecasts of daily

returns at the 0.999 percentile along with 95% confidence intervals for stress testing purposes. The results indicate that EVT-

based VaR estimates are more accurate at higher quantiles. According to estimated Generalized Pareto Distribution parameters,

certain moments of the return distributions do not exist in some countries. In addition, the daily return distributions have

different moment properties at their right and left tails. Therefore, risk and reward are not equally likely in these economies.

D 2004 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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2 An emerging economy can be defined as a market economy
1. Introduction

Large changes are the most important of all. Not

only for speculators,. . .but also for all students of

the fundamental mechanisms of price changes

(Mandelbrot, 2001).

Currency, liquidity, regulatory and interest rate

risks in emerging markets2 have been the dominant
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engines of excessive volatility in the last 15 years.

A recent example of high volatility in emerging

economies and its effect on the rest of the world is

the Asian crisis of 1997–1998.3 In early 1997, the

overall macroeconomic situation in far east Asia

had deteriorated; it involved large current account
rs. Published by Elsevier B.V. All rights reserved.

with a small share in the world economy. Further, the currency of an

emerging country can easily be traded but there is a widespread

conception among market participants that the authorities in these

economies can impose certain restrictions on the exchange rate and/

or capital flows any time. Also, political and economic stability in

these economies are an exception, rather than a rule.
3 See Corsetti, Pesenti, and Roubini (1999) and references

therein for a detailed account of these crises. A large number of

studies are available online on Nouriel Roubini’s Asian Crisis

Homepage at www.stern.nyu.edu/~nroubini.

 http:\\www.stern.nyu.edu\~nroubini 
 http:\\www.stern.nyu.edu\~nroubini 


R. Genc�ay, F. Selc�uk / International Journal of Forecasting 20 (2004) 287–303288
deficits, increasing short-term debt, and most no-

ticeably, large insolvent financial institutions who

borrowed from abroad to finance the boom in real

estate and equity investment. In June 1997, the

Thai government declared its intention to abandon

the policy of supporting/bailing out any financial

institution. There was a strong speculative attack on

the Thai baht and the authorities tried to defend the

currency by increasing the short-term interest rates.

Nevertheless, the attacks did not stop and the

government let the baht float on July 2, 1997. This

decision was a major turning point of the Asian

crisis of 1997–1998. In 2 months, the currency

depreciated 20%. The currencies of other countries

with similar economies to Thailand came under

speculative attack as well. These countries were

Malaysia, Indonesia and the Philippines. In Septem-

ber 1997, the baht was 42% below its January

level, the rupiah 37% below and the ringgit 26%

below.

The successful speculative attacks on these curren-

cies had an immediate effect on neighboring coun-

tries. The Singaporean currency had lost 8% of its

value in September 1997 as compared to January

1997. The speculative pressures continued in October

1997 in Taiwan and Hong Kong, forcing Taiwanese

authorities to let their currency float. The largest

economy in the area, Korea, was already suffering a

series of bankruptcies and financial distress in the

corporate sector, which directly affected the banking

system in early 1997. However, an early speculative

attack did not occur in Korea. Nevertheless, the

devaluations in other countries have put Korea in an

uncompetitive position and in November 1997, the

Korean currency depreciated 25% in 1 month. This

was followed by devaluations in Taiwan and Singa-

pore. Foreign banks refused to roll over the existing

debt to these countries and the situation worsened.

The financial panic led to a 40% currency collapse in

Korea in 1 week in December and stopped only after a

consortium of American, European and Japanese

banks agreed to negotiate the roll over of the short-

term loans.

The turmoil did not stop in 1997. In January 1998,

Indonesia was not able to roll over its short-term

foreign debt and declared a moratorium. With severe

macroeconomic conditions in Japan, an overall slow-

down in economic growth in the world and a decline
in commodity prices in general, the prospect for 1998

was very bleak. Suddenly, there was another currency

crisis in Russia in August 1998, which resulted in

domestic debt rescheduling and capital controls in that

country. The impact of the Russian crash was felt

across the world. In the United States, it triggered the

collapse of the USD 100 billion Long Term Capital

Management hedge fund and investors became ex-

tremely risk averse.

In Latin America, there was fear of concurrent

devaluations, and the emerging market spreads over

the U.S. T-bills increased sharply. Following the

Russian crisis, the Brazilian government promised

fiscal discipline and announced an austerity plan in

late 1998. On January 6, 1999, a provincial governor

who was a former president of Brazil, announced a

90-day moratorium on debt payments to the central

government to protest the austerity plan. The move

ignited an attack on the real (Brazil’s currency) and

there was a rapid capital outflow (about $1 billion in 1

week). On January 13, the Central Bank decided to

widen the band in which the real could be traded each

day. The new band lasted only 2 days during which

another 1 billion USD left the country. The next step

was to let the real float freely and by February 3, the

real was 32% below its January 13 value. In order to

restore confidence, the Central Bank of Brazil raised

the short-term interest rates from 29% to 39% and the

capital flight slowed down.

The currencies of other Latin American countries

had lost value against the US dollar between 1997 and

March 1999: Chile’s peso more than 13%, Colombia’s

peso 22%, Ecuador’s sucre 43%, Mexico’s peso 30%,

Peru’s sol 14% and Venezuela’s bolivar 18%. Similar

large movements were observed in equity markets as

well. The year 2000 did not come with any comfort in

emerging economies. Argentina was going through a

deep recession for the last 3 years and the authorities

were reluctant to take corrective measures in foreign

exchange rates because of the currency board arrange-

ment. A high inflation economy, Turkey, adopted a

crawling peg regime (a tablita) to reduce inflation

without having a ‘‘corrective devaluation’’ before-

hand. Both countries were perceived as ‘‘next trouble

spots’’ by international market participants and there

was increasing concern of spillover effects. A first

sign of discomfort emerged in November 2000 in

Turkey. The rush of the IMF team to rescue the
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Turkish economy calmed down the markets tempo-

rarily. More recently, the decision to abandon the

currency board arrangement in Argentina after months

of social tension and the February 2001 crisis in

Turkey during which the overnight interest rates hit

(simple annual) 8000% proved once again that the

volatility in emerging economies is an inherent part of

the system.

The common lesson from these financial disasters

is that billions of dollars can be lost because of poor

supervision and management of financial risks. The

Value-at-Risk (VaR) was developed in response to

financial disasters of the 1990s and obtained an

increasingly important role in market risk manage-

ment. The VaR summarizes the worst loss over a

target horizon with a given level of confidence. It is a

popular approach because it provides a single quan-

tity that summarizes the overall market risk faced by

an institution.4

In a VaR context, precise prediction of the prob-

ability of an extreme movement in the value of a

portfolio is essential for both risk management and

regulatory purposes. By their very nature, extreme

movements are related to the tails of the distribution

of the underlying data generating process. Several

tail studies which followed the pioneering work by

Mandelbrot (1963a, 1963b) indicate that most finan-

cial time series are fat-tailed.5 Although these find-

ings necessitate a definition of what is meant by a

fat-tailed distribution, there is no unique definition of

fat-tailedness (heavy-tailness) of a distribution in the

lature.6 In this study, we consider a distribution to be

fat-tailed if a power decay of the density function is

observed in the tails. Accordingly, an exponential

decay or a finite endpoint at the tail (the density
4 See Dowd (1998), Duffie and Pan (1997) and Jorion (1997)

for more details on the VaR methodology. For the regulatory roots

of the VaR, see Basel (1996).
5 See, for example, Boothe and Glassman (1987), Dacorogna,

Genc�ay, Müller, Olsen, and Pictet (2001), Dacorogna, Pictet, Müller,

and de Vries (2001), Danielsson and de Vries (1997), Ghose and

Kroner (1995), Hauksson, Dacorogna, Domenig, Müller, and

Samorodnitsky (2000), Hols and de Vries (1991), Koedijk,

Schafgans, and de Vries (1990), Levich (1985), Loretan and

Phillips (1994), Müller, Dacorogna, and Pictet (1998), Mussa

(1979), and Pictet, Dacorogna, and Müller (1998).
6 See Embrechts, Kluppelberg, and Mikosch (1997, Ch.2 and

8) for a detailed discussion.
reaching zero before a finite quantile) is treated as

thin-tailed.7

In order to model fat-tailed distributions, the log-

normal distribution, generalized error distribution and

mixtures of normal distributions are suggested in

many studies. However, these distributions are thin-

tailed according to our definition since the tails of

these distributions decay exponentially, although they

have excess kurtosis over the normal distribution. In

some practical applications, these distributions may fit

the empirical distributions up to moderate quantiles

but their fit deteriorates rapidly at high quantiles (at

extremes).

This paper studies the nonlinear estimation and

forecasting of the tails of return distributions in

emerging markets. Instead of forcing a single distri-

bution for the entire sample, it is possible to

investigate only the tails of the return distributions

using limit laws, given that only the tails are

important for extreme values. Furthermore, the para-

metric modeling of the tails is convenient for the

extrapolation of probability assignments to the quan-

tiles even higher than the most extreme observation

in the sample. One such approach is the extreme

value theory (EVT) which provides a formal frame-

work in which to study the tail behavior of the fat-

tailed distributions.

The EVT stemming from statistics has found many

applications in structural engineering, oceanography,

hydrology, pollution studies, meteorology, material

strength, highway traffic and many others.8 The link

between the EVT and risk management is that EVT

methods fit extreme quantiles better than the conven-

tional approaches for heavy-tailed data.9 The EVT

approach is also a convenient framework for the

separate treatment of the tails of a distribution, which
7 Although the fourth moment of an empirical distribution

(sample kurtosis) is sometimes used to decide on whether an

empirical distribution is heavy-tailed or not, this measure might be

misleading. For example, the uniform distribution has excess

kurtosis over the normal distribution but it is thin-tailed according to

our definition.
8 For an in-depth coverage of EVT and its applications in

finance and insurance, see Embrechts et al. (1997), McNeil (1998),

Reiss and Thomas (1997) and Teugels and Vynckier (1996).
9 See Embrechts (2000a) and Embrechts, Resnick, and

Samorodnitsky (1998) for the efficiency of EVT as a risk

management tool.
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allows for asymmetry. Considering the fact that most

financial return series are asymmetric (Levich, 1985;

Mussa, 1979), the EVT approach is advantageous

over models which assume symmetric distributions

such as t-distributions, normal distributions, ARCH,

GARCH-like distributions except E-GARCH which

allows for asymmetry (Nelson, 1991).

Our results indicate that the daily return distribu-

tions have different moment restrictions at their left

and right tails. Therefore, the risk and reward are not

equally likely in these economies. Estimates of left

and right tails at the 0.999 percentile along with 95%

confidence intervals show that it is possible to

observe over 10% losses in 1 day in all emerging

markets. Model comparisons indicate that the GPD

model clearly dominates others in terms of VaR

forecasting at the 99th and higher quantiles. We

conclude that the GPD and the extreme value theory

are an indispensable part of risk management in

general and the VaR calculations in particular, in

emerging markets.

This paper is structured as follows. In Section 2,

the extreme value theory and a review of some

common tools of preliminary data analysis are cov-

ered. Section 3 presents the descriptive statistics and

tail estimation. Section 4 reviews some popular

approaches in VaR estimation and compares the

relative performance of different models in terms of

VaR violation ratios. We conclude afterwards.
10 The assumption of independence can be easily dropped and

the theoretical results follow through. See McNeil (1997). The

assumption of identical distribution is for convenience and can also

be relaxed.
11 For convenience, we will assume that l= 0 and r2 = 1 in this

section.
12 The sample maxima is min(X1,. . .,Xn) =�max(�X1,. . .,

�Xn).
2. Extreme value theory

Extreme value theory is a powerful and yet fairly

robust framework in which to study the tail behavior

of a distribution. Even though extreme value theory

has previously found large applicability in climatolo-

gy and hydrology, there have also been a number of

extreme value studies in the finance literature in recent

years. de Haan, Jansen, Koedijk, and de Vries (1994)

study the quantile estimation using extreme value

theory. McNeil (1997, 1998) study the estimation of

the tails of loss severity distributions and the estima-

tion of the quantile risk measures for financial time

series using extreme value theory. Embrechts et al.

(1998) overview the extreme value theory as a risk

management tool. Müller et al. (1998) and Pictet et al.

(1998) study the probability of exceedances for the
foreign exchange rates and compare them with the

GARCH and HARCH models. Embrechts (1999,

2000a) studies the potentials and limitations of the

extreme value theory. McNeil (1999) provides an

extensive overview of the extreme value theory for

risk managers. McNeil and Frey (2000) study the

estimation of tail-related risk measures for heteroske-

dastic financial time series. Embrechts (2000b),

Embrechts et al. (1997) are a comprehensive source

of the extreme value theory to the finance and

insurance literature.

In the following section, we present the paramet-

ric framework for our study. Within the EVT context,

there are two approaches to study the extremal

events. One of them is the direct modeling of the

distribution of minimum or maximum realizations.

The other one is modeling the exceedances of a

particular threshold.

2.1. Fisher–Tippett theorem

The normal distribution is the important limiting

distribution for sample averages as summarized in a

central limit theorem. Similarly, the family of ex-

treme value distributions is the one to study the

limiting distributions of the sample extrema. This

family can be presented under a single parameter-

ization known as the generalized extreme value

distribution (GEV). The theory deals with the con-

vergence of maxima. Suppose that Xt, t= 1,2,. . .,n is

a sequence of independently and identically distrib-

uted10 random variables with a common distribution

function F(x) = Pr{XtV x} which has mean (location

parameter) l and variance (scale parameter) r2.11

Denote the sample maxima12 of Xt by M1 =X1,

Mn =max(X1,. . ., Xn), nz 2 and let R denote the

real line. Given a sequence of cn > 0, dnaR and

some non-degenerate distribution function H such
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that c�1
n ðMn � dnÞ!

d
H , then H belongs to one of

the following three families of distributions:

Gumbel : KðxÞ ¼ expð�exp�xÞ; xaR

Fréchet : UaðxÞ ¼
0; xV 0

expð�x�aÞ; x > 0; a > 0

8<
:

Weibull : WaðxÞ ¼
exp½�ð�x�aÞ�; xV 0; a < 0

1; x > 0:

8<
:

The Fisher and Tippett (1928) theorem13 suggests

that the asymptotic distribution of the maxima

belongs to one of the three distributions above,14

regardless of the original distribution of the ob-

served data.15

Fréchet and Weibull distributions attain the shape

of a Gumbel distribution when the tail index param-

eter a goes tol and �l, respectively. By taking the

reparameterization n = 1/a, due to Jenkinson (1955)

and von Mises (1936), Fréchet, Weibull and Gumbel

distributions can be represented in a unified model

with a single parameter. This representation is known

as the generalized extreme value distribution (GEV)

HnðxÞ ¼
expf�ð1þ nxÞ�1=ng; if n p 0; 1þnx>0

expf�expð�xÞg; if n ¼ 0

8<
:

where n = 1/a is a shape parameter and a is the tail

index.

The class of distributions of F(x) where the

Fisher–Tippett theorem holds is quite large.16 One
13 The first formal proof of the Fisher-Tippett theorem is given

in Gnedenko (1943).
14 In conventional statistics, a Weibull distribution function

Fa(x) is defined as Fa(x) = 1� e� xa for x > 0. The Weibull

distribution function Wa(x) above is concentrated on (�l,0) and

it is Wa(x) = 1�Fa(� x) for x< 0. Fa(x) and Wa(x) have completely

different extremal behavior. In the extreme value theory literature,

Wa(x) is referred to as the Weibull distribution. See Embrechts et al.

(1997, Ch. 3).
15 The interested reader will find the full development of the

theory in de Haan (1990) and Leadbetter, Lindgren, and Rootzén

(1983).
16 Embrechts (1999) Embrechts et al. (1997, 1998) and McNeil

(1997, 1999), have excellent discussions of the theory behind the

extreme value distributions from the risk management perspective.
of the conditions is that F(x) has to be in the

domain of attraction for the Fréchet distribution17

(n > 0) which in general holds for the financial time

series. Gnedenko (1943) shows that if the tail of

F(x) decays like a power function, then it is in the

domain of attraction for the Fréchet distribution.

The class of distributions whose tails decay like a

power function is large and includes the Pareto,

Cauchy, Student’s t-test and mixture distributions.

These distributions are the well-known heavy-tailed

distributions.

2.2. Number of exceedances over a threshold

In general, we are not only interested in the maxima

of observations, but also in the behavior of large

observations which exceed a high threshold. One

method of extracting extremes from a sample of obser-

vations, Xt, t= 1,2,. . .,n with a distribution function

F(x) = Pr{XtV x} is to take the exceedances over a

predetermined, high threshold u. An exceedance of a

threshold u occurs when Xt > u for any t in t = 1,2,. . .,n.
An excess over u is defined by y =Xi� u.18

Given a high threshold u, the probability distribu-

tion of excess values of X over threshold u is defined by

FuðyÞ ¼ PrfX � uVy j X > ug ð1Þ

which represents the probability that the value of X

exceeds the threshold u by at most an amount y given

that X exceeds the threshold u. This conditional prob-

ability may be written as

FuðyÞ ¼
PrfX � uVy;X > ug

PrðX > uÞ

¼ Fðyþ uÞ � FðuÞ
1� FðuÞ : ð2Þ

Since x = y + u for X > u, we have the following repre-

sentation

FðxÞ ¼ ½1� FðuÞ�FuðyÞ þ FðuÞ: ð3Þ

Notice that this representation is valid only for X >u.

A theorem by Balkema and de Haan (1974) and

Pickands (1975) shows that for sufficiently high

threshold u, the distribution function of the excess
17 See Falk, Hüssler, and Reiss (1994).
18 This is also referred to as the Peaks-over-Threshold (POT).
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may be approximated by the generalized Pareto dis-

tribution (GPD) because as the threshold gets large,

the excess distribution Fu( y) converges to the GPD.

The GPD in general is defined as

Gn;r;vðxÞ ¼
1� 1þ n x�v

r

� ��1=n
if n p 0

1� e�ðx�vÞ=r if n ¼ 0;

8<
: ð4Þ

with

xa
½v;l�; if nz0

½v; v� r=n�; if n < 0

8<
:

where n = 1/a is the shape parameter, a is the tail index,

r is the scale parameter, and v is the location parameter.

When v = 0 and r = 1, the representation is known as

the standard GPD. There is a simple relationship

between the standard GDP Gn (x) and Hn(x) such that

Gn(x) = 1 + log Hn (x) if log Hn (x) >� 1.

The GPD embeds a number of other distributions.

When n>0, it takes the form of the ordinary Pareto

distribution. This particular case is the most relevant

for financial time series analysis since it is a heavy-

tailed one. For n>0, E[X k] is infinite for k>1/n. For
instance, the GPD has an infinite variance for n= 0.5
and, when n= 0.25, it has an infinite fourth moment.

For the security returns or high frequency foreign

exchange returns, the estimates of n are usually less

than 0.5, implying that the returns have finite variance

(Dacorogna, Genc�ay, et al., 2001). When n= 0, the
GPD corresponds to the exponential distribution and it

is known as a Pareto II type distribution for n < 0.
The importance of the Balkema and de Haan

(1974) and Pickands (1975) results is that the distri-

bution of excesses may be approximated by the GPD

by choosing n and setting a high threshold u. The

GPD model can be estimated with the maximum

likelihood method. For n >� 0.5, Hosking and Wallis

(1987) present evidence that maximum likelihood

regularity conditions are fulfilled and the maximum

likelihood estimates are asymptotically normally dis-

tributed. Therefore, the approximate standard errors

for the estimator of n can be obtained through max-

imum likelihood estimation.

For the tail estimation, recall from Eq. (3) that

FðxÞ ¼ ½1� FðuÞ�FuðyÞ þ FðuÞ:
Since Fu( y) converges to the GPD for sufficiently

large u, and since x = y + u for X > u, we have

FðxÞ ¼ ½1� FðuÞ�Gn;r;uðx� uÞ þ FðuÞ: ð5Þ

After determining a high threshold u, the last term on

the right hand side can be determined by (n� nu)/n

where nu is the number of exceedances and n is the

sample size. As a result, we have the following

estimator

F̂ðxÞ ¼ 1� n� nu

n

� �
Gn̂;r̂;uðx� uÞ þ n� nu

n

¼ nu

n
Gn̂;r̂;uðx� uÞ þ n� nu

n

¼ 1þ nu

n
ðGn̂;r̂;uðx� uÞ � 1Þ:

Therefore, the tail estimator becomes

F̂ðxÞ ¼ 1� nu

n
1þ n̂

x� u

r̂

� ��1=n̂
given that

Gn;r;uðxÞ ¼ 1� 1þ n
x� u

r

� ��1=n
ð6Þ

where n̂ and r̂ are the maximum likelihood estimators.

Notice that the estimator in Eq. (6) is valid only for

X >u.

2.3. Preliminary data analysis

In the extreme value theory and applications, the

QQ-plot (quantile–quantile plot) is typically plotted

against the exponential distribution (i.e. a distribution

with a thin-sized tail) to measure the fat-tailness of a

distribution. If the data is from an exponential distri-

bution, the points on the graph would lie along a

positively sloped straight line. If there is a concave

presence, this would indicate a fat-tailed distribution,

whereas a convex departure is an indication of a short-

tailed distribution.19



22 Danielsson, de Haan, Pend, and de Vries (2001) propose a

standardized procedure for choosing an optimal k value.
23 The net portfolio investment in emerging markets by

industrialized countries was USD 58.3 billion in 2000. The

historical record is USD 109.9 billion in 1994. Source: IMF,

International Financial Statistics.
24 Foreign investors may face completely different financial
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A second tool is the sample mean excess function

(MEF) which is defined by

enðuÞ ¼

Xn
i¼1

ðXi � uÞ

Xn
i¼1

IfXi>ug

ð7Þ

where I is an indicator function. The MEF is the sum

of the excesses over the threshold u divided by the

number of data points which exceeds the threshold u.

It is an estimate of the mean excess function which

describes the expected overshoot of a threshold once

an exceedance occurs. If the empirical MEF is a

positively sloped straight line above a certain thresh-

old u, it is an indication that the data follows the GPD

with a positive shape parameter n. On the other hand,

exponentially distributed data would show a horizon-

tal MEF while short-tailed data would have a nega-

tively sloped line.

Another tool in threshold determination is the

Hill-plot.20 Hill (1975) proposed an estimator of n
when n>0 (Fréchet Case). By ordering the data with

respect to their values as X1,n, X2,n, X3,n,. . ., Xn,n

where X1,nzX2,nzX1,nz . . .zXn,n, the Hill’s Esti-

mator of the tail index n is

n̂ ¼ 1

k

Xk
i¼j

lnXj;n � lnXk;n ð8Þ

where k!l is upper order statistics (the number of

exceedances),21 n is the sample size, and a = 1/n is

the tail index. A Hill-plot is constructed such that

estimated n is plotted as a function of k upper order

statistics or the threshold. A threshold is selected

from the plot where the shape parameter n is fairly

stable.

The Hill estimator is proven to be a consistent

estimator of n = 1/a for fat-tailed distributions in

Mason (1982). The conditions on k and n for weak

consistency of the Hill’s estimator are given in Mason

(1982) and Rootzén, Leadbetter, and de Haan (1992).

Deheuvels, Hausler, and Mason (1988) investigate the
20 See Embrechts et al. (1997) for a detailed discussion and

several examples of the Hill-plot.
21 The ith element from the ordered sample, Xi,n is called ith

upper order statistic.
conditions for the strong consistency of the Hill’s

estimator. From Hall (1982) and Goldie and Smith

(1987), it follows that (n̂� n)k1/2 is asymptotically

normally distributed with zero mean and variance n2.
A difficulty of the Hill’s estimator is the ambiguity

of the value of threshold parameter, k. In threshold

determination, we face a trade off between bias and

variance. If we choose a low threshold, the number of

observations (exceedances) increases and the estima-

tion becomes more precise. However, choosing a low

threshold also introduces some observations from the

center of the distribution and the estimation becomes

biased. While the estimates of n based on a few largest

observations are highly sensitive to the number of

observations used, the estimates based on many ele-

ments from the top of the ordering are biased.22

Therefore, a careful combination of several techni-

ques, such as the QQ-plot, the Hill-plot and the MEF

should be considered in threshold determination.
3. Data description and tail analysis

Dynamics of financial markets in emerging coun-

tries show substantial differences as compared to

developed economies. These markets experience larger

‘‘financial earthquakes’’ than developed economies,

and can be labeled as ‘‘markets with many fault lines’’.

Since a significant portion of total savings in devel-

oped economies are invested in emerging markets by

hedge and mutual funds, the implications of these

dynamics are not confined with the residents of

emerging market countries.23 Therefore, a careful

investigation of the market dynamics in these econo-

mies would benefit investors at large by increasing the

investor awareness.24
circumstances in emerging economies than they have in their home

country. To point this out, Dornbush (2001) refers to the catchy title

of an article written in the early 1980s about the debt crisis in Latin

American economies: ‘‘We are not in Kansas anymore. . .’’ (Diaz,

1984).
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In order to investigate the risk and reward dynam-

ics in emerging economies, we collected daily stock

market data from Argentina, Brazil, Hong Kong,

Indonesia, Korea, Mexico, Singapore, Taiwan and

Turkey. Descriptive statistics of daily returns are

presented in Table 1. The daily returns are defined as

ri;t ¼ logðxi;t=xi;t�1Þ � 100

¼ ðlogxi;t � logxi;t�1Þ � 100 ð9Þ

where xi,t is the daily closing value of the stock market

index in country i on day t.

The highest averages of the daily returns are in

Brazil (0.37%), Turkey (0.22%) and Mexico (0.06%).

These daily return rates imply (annualized compound)

returns of 161% in Brazil, 77% in Turkey and 17% in

Mexico. The unusual average positive rate of return in

Brazil and Turkey is possibly a product of high

inflation rates in these countries. The annual rate of

inflation (consumer prices) in Brazil was over 2000%

per year in 1993 and 1994 before it was stabilized

under 10%. The annual rate of inflation (consumer

prices) in Turkey fluctuated between 60% and 120%

during 1988–1999. Not surprisingly, Brasil and Tur-

key also have the highest standard deviations (3.2%

and 3%) of the daily stock returns. The lowest

averages of the daily log returns are in Korea

(� 0.02%) and Argentina (0.01%). Among these
Table 1

Descriptive statistics of the daily returns, log(xt /xt � 1)� 100, from nine e

n Mean Std Ku

Argentina 1935 0.01 0.019 9.19

Brazil 2086 0.37 0.030 10.56

Hong Kong 7305 0.04 0.020 36.64

Indonesia 2085 0.04 0.011 16.92

Korea 2868 � 0.02 0.021 7.36

Mexico 1453 0.06 0.020 10.90

Philippines 1076 � 0.02 0.015 6.78

Singapore 3910 0.04 0.014 61.25

Taiwan 7305 0.04 0.019 11.82

Turkey 3223 0.22 0.032 8.04

n=Sample size; Mean = Sample mean; Std = Standard deviation; Ku =

Max=Maximum observed daily return; Low=Daily return correspond

percentile. Sample periods: Argentina: August 2, 1993, to December 29,

January 1, 1973 to December 29, 2000; Indonesia: January 4, 1993 to D

Mexico: June 6, 1995 to December 29, 2000; Singapore: January 4, 1985

2000; Turkey: January 8, 1988 to December 29, 2000. Data source: Data
two, Korea stands out with a high standard deviation

of 2.1%.

According to the sample kurtosis estimates, the

daily rate of returns are far from being normally

distributed. The lowest kurtosis estimates are 7.4

(Korea) and 8.0 (Turkey), while the highest estimates

are 61.2 (Singapore) and 36.6 (Hong Kong). Based

on the sample kurtosis estimates, it may be argued

that the return distributions in all the markets are fat-

tailed. We also studied the QQ-plots of returns

against the exponential distribution for each country.

These plots confirm that the return distributions have

fat tails.

The sample skewness shows that the daily returns

have a symmetric distribution only in Argentina. In all

other countries, the returns have either positive or

negative skewness. The sample skewnesses are neg-

ative in Hong Kong (� 1.43), Indonesia (� 1.29),

Mexico (� 0.20) and Singapore (� 2.21). This indi-

cates that the asymmetric tail extends more towards

negative values than positive ones. Positive skewness

in other countries ranges from 0.09 (Taiwan) to 0.54

(Brazil).

Table 1 also shows the highest and lowest 1 day

return from each country. The highest 1 day positive

returns are in Turkey (30.5%), Brazil (28.8%) and

Taiwan (19.9%). The highest 1 day losses are in Hong

Kong (40.5%), Singapore (29.2%) and Turkey

(19.8%).
merging stock markets

Sk Min Max Low High

0.00 � 13.6 11.9 � 3.0 2.7

0.54 � 17.2 28.8 � 4.3 5.3

� 1.43 � 40.5 17.2 � 2.9 2.8

� 1.29 � 11.8 6.7 � 1.5 1.6

0.27 � 12.5 14.6 � 3.3 3.5

� 0.20 � 15.0 13.3 � 3.0 3.2

0.10 � 7.9 9.1 � 2.5 2.4

� 2.21 � 29.2 15.5 � 1.8 1.9

0.09 � 19.7 19.9 � 2.9 2.9

0.15 � 19.8 30.5 � 4.8 5.2

Kurtosis; Sk = Skewness; Min =Minimum observed daily return;

ing to 5th percentile; High =Daily return corresponding to 95th

2000; Brazil: January 1, 1993 to December 29, 2000; Hong Kong:

ecember 29, 2000; Korea: January 3, 1990 to December 29, 2000;

to December 29, 2000; Taiwan: January 1, 1973 to December 29,

stream.



Table 3

Maximum Likelihood Estimates (MLE) of the parameters of the

Generalized Pareto Distribution (GPD)

Lower tail Upper tail

n̂ se(n) r̂ se(r) n̂ se(n) r̂ se(r)

Argentina 0.20 0.01 1.1 0.2 0.27 0.08 1.1 0.1

Brazil 0.15 0.12 1.8 0.3 0.48 0.26 1.5 0.5

Hong Kong 0.48 0.22 1.6 0.4 0.24 0.05 1.1 0.0

Indonesia 0.32 0.09 0.6 0.1 0.18 0.10 0.5 0.1

Korea 0.03 0.11 1.5 0.2 0.20 0.32 1.3 0.5

Table 2

Threshold percentage returns, corresponding empirical quantiles and the number of exceedances

Lower tail Upper tail

Threshold (%) Quantile Exceedances Threshold (%) Quantile Exceedances

Argentina � 2.7 6.7 129 1.7 87.2 247

Brazil � 3.8 7.0 130 8.0 98.5 32

Hong Kong � 7.0 0.6 41 2.0 90.3 706

Indonesia � 1.0 10.0 21 1.4 93.3 140

Korea � 3.5 4.5 130 7.0 99.0 20

Mexico � 3.0 5.0 69 4.1 97.1 41

Philippines � 4.0 1.8 19 3.3 97.8 24

Singapore � 2.5 2.6 101 2.0 95.0 179

Taiwan � 6.5 0.6 41 6.0 99.3 48

Turkey � 9.0 1 28 8.3 98.8 38
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3.1. Tail estimation

The crucial step in estimating the parameters of the

GPD is the determination of a threshold value u. For

each country, we examined the threshold at which the

sample mean excess function has a positive slope. A

visual inspection of the QQ-plots was also helpful to

determine a range for the threshold values. We also

used the Hill estimator for each country and compared

it with the mean excess function and the QQ-plots. The

selected threshold percentage return, corresponding

sample quantile and the number of exceedances are

given in Table 2.

The maximum likelihood estimates of the tail

index n and the scale parameter r with corresponding

standard errors are presented in Table 3.25 The esti-

mated tail index values range between � 0.18 (Indo-

nesia, right tail) and 0.60 (Taiwan, left tail). High

values of the estimated tail index for the left tail in all

emerging markets (except Korea) is an indication that

these markets experienced severe crashes. The results

also indicate that the right tail and the left tail of the

stock return distributions have different moment

properties.

For Hong Kong, Mexico, Singapore and Taiwan,

the left tail index is over 0.40. This is an indication of

the high risk associated with these markets. Since the

right tail index is less than the left tail index, we can

conclude that risk and reward are not equally likely in
25 The results are obtained using the EVIM (Extreme Value

Analysis in MATLAB) software. See Gençay, Selçuk, and

Ulugülyağcı (2001) for more details.
these economies. On the other hand, Argentina, Bra-

zil, Korea and Turkey have higher estimates of the

right tail index than of the left tail index. Therefore,

high positive returns are more likely than similar

losses in these economies.

The positive stock return distribution in Brazil,

Taiwan and Turkey may not have a finite second

moment since the estimated n is around 0.50 for these

countries. On the other hand, the positive stock return

distribution in Argentina, Hong Kong and Singapore

have the first three moments but may not have the

fourth moment since the estimated n is around 0.25.

For the left tail, we have a different picture. The

negative stock return distribution may not have a

finite second moment in Hong Kong, Mexico, Singa-

pore Iand Taiwan, whereas the first four moments of

the negative stock return distribution seems to exist in

Argentina, Brazil and Turkey.
Mexico 0.42 0.18 1.0 0.2 0.30 0.22 1.1 0.3

Philippines 0.44 0.37 0.5 0.2 � 0.09 0.20 1.5 0.4

Singapore 0.48 0.14 1.0 0.2 0.26 0.09 0.9 0.1

Taiwan 0.60 0.26 0.7 0.2 0.53 0.25 1.1 0.3

Turkey 0.22 0.27 1.6 0.5 0.59 0.26 1.1 0.3



Table 4

Estimated daily percent returns at 0.999 percentile with 95%

confidence levels

Lower tail Upper tail

CIlower Return CIupper CIlower Return CIupper

Argentina � 8.2 � 10.1 � 15.1 8.9 11.6 17.5

Brazil � 12.0 � 14.7 � 22.1 13.2 16.7 34.3

Hong Kong � 9.9 � 11.4 � 14.5 9.8 11.3 13.7

Indonesia � 5.7 � 7.6 � 12.1 4.1 4.8 6.6

Korea � 8.5 � 9.5 � 12.0 8.9 10.1 14.0

Mexico � 8.7 � 12.2 � 22.6 8.1 10.0 20.0

Philippines � 5.4 � 6.8 � 11.9 6.2 7.4 12.5

Singapore � 7.7 � 10.1 � 16.4 6.7 8.1 11.0

Taiwan � 7.9 � 8.7 � 10.5 8.4 9.6 12.4

Turkey � 12.1 � 13.6 � 18.3 12.1 14.3 22.5
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3.2. Point predictions at the tails

A portfolio manager is interested not only in

expected return in a given market, but also expected

extreme returns. A financial institution would likely

see the possible change in the value of its balance

sheet under extreme stress. This is possible by esti-

mating a tail percentile through a GPD model. For

each country, we obtained 0.999 percentile values (1

day in 4 years, since there are approximately 260

business days in each year) for left and right tails

along with 95% confidence intervals based on the

maximum likelihood method. The results are pre-

sented in Table 4. The estimated highest 1 day positive

returns are in Brazil (16.7%), Turkey (14.3%) and

Argentina (11.6%). The highest estimated 1 day neg-

ative returns are Brazil (14.7%), Turkey (13.6%) and

Mexico (12.2%). Upper confidence intervals indicate

that it is possible to observe over 10% loses in 1 day in

all emerging markets, ranging from a low 10.5% 1 day

loss in Taiwan to a high 22.6% loss in Mexico. In

comparison, the lower confidence intervals for the

positive returns are less than 10% except in Brazil

and Turkey.
26 A typical value of a is 5% or 1%.
4. Modeling Value-at-Risk

Let rt = log( pt/pt� 1) be the returns at time t where

pt is the price of an asset (or portfolio) at time t. The

VaRt(a) at the (1� a) percentile is defined by

PrðrtVVaRtðaÞÞ ¼ a ð10Þ
which calculates the probability that returns at time t

will be less than (or equal to) VaRt(a), a percent of the

time.26 The VaR is the maximum potential increase in

value of a portfolio given the specifications of normal

market conditions, time horizon and a level of statis-

tical confidence. The VaR’s popularity originates from

the aggregation of several components of risk at firm

and market levels into a single number.

The acceptance and usage of VaR has been spread-

ing rapidly since its inception in the early 1990s. The

VaR is supported by the Group of Ten banks, the

Group of Thirty and the Bank for International Settle-

ments and the European Union. The limitations of the

VaR are that it may lead to a wide variety of results

under a wide variety of assumptions and methods; it

focuses on a single somewhat arbitrary point; it

explicitly does not address exposure in extreme mar-

ket conditions; and it is a statistical measure, not a

managerial/economic one.

The methods used for VaR can be grouped under

the parametric and nonparametric approaches. In this

paper, we study the VaR estimation with extreme

value theory (EVT) which is a parametric approach.

The advantage of the EVT is that it focuses on the tails

of the sample distribution when only the tails are

important for practical purposes. Since fitting a single

distribution to the entire sample imposes too much

structure and our need here is the tails, we adopt the

EVT framework which is what is needed to calculate

the VaR. We compare six different models for esti-

mating one period ahead return predictions in both

tails of the return distribution at different tail quan-

tiles. These models are the variance–covariance ap-

proach with normal distribution, variance–covariance

approach with Student’s t distribution, historical sim-

ulation, adaptive generalized Pareto distribution

(GPD) and nonadaptive GPD.

4.1. Variance–covariance method

The variance–covariance method is the simplest

approach among the various models used to estimate

the VaR. Let the sample of observations be denoted by

rt, t= 1,2,. . .,n where n is the sample size. Let us

assume that rt follows a martingale process with
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rt= lt+ et where et has a distribution function F with

zero mean and variance, rt
2. The VaR in this case can

be calculated as

VaRtðaÞ ¼ l̂t þ F�1ðaÞr̂t ð11Þ

where F� 1(a) is the qth quantile ( q = 1� a) value of

the unknown distribution function F. An estimate of lt
and rt

2 can be obtained from the sample mean and the

sample variance by

l̂t ¼
1

n

Xn
i¼1

ri; r̂2
t ¼

1

n� 1

Xn
i¼1

ðri � l̂tÞ2:

Although sample variance as an estimator of the

standard deviation in variance–covariance approach

is simple, it has drawbacks at high quantiles of a fat-

tailed empirical distribution. The quantile estimates of

the variance–covariance method for the right tail (left

tail) are biased downwards (upwards) for high quan-

tiles of a fat-tailed empirical distribution. Therefore,

the risk is underestimated with this approach. Another

drawback of this method is that it is not appropriate

for asymmetric distributions. Despite these draw-

backs, this approach is commonly used for calculating

the VaR from holding a certain portfolio, since the

VaR is additive when it is based on sample variance

under the normality assumption.

Instead of the sample variance, the standard devi-

ation in Eq. (11) can be estimated by a statistical

model. Since financial time series exhibit volatility

clustering, the ARCH (Engle, 1982) and GARCH

(Bollerslev, 1986) are popular models for volatility

modeling.27 If rt follows a GARCH(p,q) model, then

rt ¼ vt
ffiffiffiffi
ht

p
ð12Þ

where vt is a Gaussian white noise with constant

variance rv
2 = 1, and ht is

ht ¼ a0 þ
Xp
i¼1

airt�1 þ
Xq
j¼1

bjht�j:

Although the conditional distribution of the GARCH

process has normal tails, the unconditional distribu-
27 ARCH and GARCH refer to Autoregressive Conditional

Heteroscedasticity and Generalized Autoregressive Conditional

Heteroscedasticity, respectively.
tion has some excess kurtosis. However, this may not

be sufficient for modeling fat-tailed distributions since

the tails of the unconditional distribution decay expo-

nentially fast. In these cases, GARCH-t (GARCH

with Student’s t-innovations) model may be an alter-

native. Aweakness of the GARCH models is that they

generally produce highly volatile quantile estimates

(see Genc�ay, Selc�uk, and Ulugülyağcı (2003)).

Excessive volatility of quantile estimates is not

desirable in risk management as it is costly to adjust

the required capital frequently in light of the esti-

mated VaR and difficult to regulate.

4.2. Historical simulation

The historical simulation method estimates the

quantiles of an underlying distribution from the real-

ization of the distribution. The VaR in this case is

estimated by

VaRtðaÞ ¼ F�1ðaÞr

where F� 1(a) r is the qth quantile ( q = 1� a) of the
sample distribution.

The problem with this approach is that the empir-

ical distribution function is not one-to-one but con-

stant between two realizations. That is, we may not

have observations corresponding to certain quantiles

of the underlying distribution. A simple solution may

be rounding the probability level to the nearest em-

pirical probability and then taking the corresponding

quantile as the desired quantile estimate. A more

appropriate solution is to smooth the empirical distri-

bution function with piecewise linear interpolation or

kernel interpolation so that it is one-to-one.

The historical simulation method may fit the sam-

ple well, around the moderate quantiles, since no

parametric form for the distribution is assumed. The

disadvantage of this method is that the high quantile

estimates are not reliable since they are calculated

from only a few observations. Furthermore, it is not

possible to obtain any quantile estimates above the

highest observed quantile.

4.3. VaR with EVT

After estimating the shape and scale parameters n
and r with the maximum likelihood method, the EVT
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can be utilized to obtain a VaR estimate. For the

maximum likelihood estimation, the density f of the

GPD distribution with parameters n and r is (Smith,

1987)

f ðxÞ ¼ 1

r
1þ n

x

r

� ��1
n�1

:

The corresponding log-likelihood function is

S ðn; rÞ ¼ �nlogðrÞ � 1

n
þ 1

� �Xn
i¼1

log 1þ n
r
Xi

� �

where n is the sample size. For n>� 0.5, Hosking and

Wallis (1987) present evidence that maximum likeli-

hood regularity conditions are fulfilled and the max-

imum likelihood estimates are asymptotically

normally distributed. Therefore, the approximate stan-

dard errors for the estimators of r and n can also be

obtained through maximum likelihood estimation.

For a given probability q>F(u), an estimate of the

VaR may be calculated by inverting the tail estimate in

Eq. (6) to obtain28

VaRtðaÞ ¼ uþ r̂

n̂

n

nu
a

� ��n̂

�1

" #
ð13Þ

where u is a threshold, r̂ is the estimated scale

parameter, is the estimated shape parameter, n is the

sample size, nu is the number of exceedances and

a = 1� q.29

4.4. Relative performance of VaR models

We consider six different models for estimating

one period ahead return predictions in both tails of the

return distribution at different tail quantiles. These

models are variance–covariance approach with nor-

mal distribution, variance–covariance approach with

Student’s t distribution, historical simulation, adaptive

GPD and nonadaptive GPD. In our preliminary anal-
28 Also, see Embrechts et al. (1997, p. 354) and McNeil (1999).
29 As an example, suppose that in daily stock returns, the

threshold is determined as 6% and estimated parameters are r̂ = 0.05

and n
ˆ
= 0.50. Further suppose that n= 1000 and nu= 50. The VaR at

1% is VaRtð0:01Þ ¼ 0:06þ 0:05=0:50½ðð1000=50Þ0:01Þ�0:50 � 1�
¼ 0:184:That is, the stock return will not exceed 18.4% in 1 day 99%

of the time.
ysis, we also considered GARCH and GARCH vari-

eties. However, as reported in Genc�ay et al. (2003),

one period ahead estimated returns from GARCH

models were extremely volatile without having any

significant gain over other models in terms of forecast

precision. Also, our GPD estimates indicated that

starting from the second moment, certain moments

of the return distribution may not exist. Therefore, we

excluded the GARCH model from our relative per-

formance study.

Our forecasting methodology is such that we adopt

a sliding window with three different sizes: 500, 1000

and 1500 days. For example, with a window size of

500, the window is placed between the 1st and the

500th data points, the model is estimated and the

return forecast is obtained for the 501st day at

different quantiles. Next, the window is moved one

period ahead to 2nd and 501st data points to obtain a

forecast of the 502nd day return with updated param-

eters from this new sample. The last approach, non-

adaptive GPD, does not utilize a window and uses all

available data starting at the 500th, 1000th or 1500th

day. For instance, the model is estimated using data

from the first 500 days, then the 501st day return is

estimated and stored. Next, the model is estimated

adding the 501st day return into the sample and a

forecast of the 502nd day return is obtained and

stored.

There is no difficulty in obtaining forecasts from

the variance–covariance approach with normal distri-

bution since it requires only the sample mean and the

sample standard deviation. However, other modeling

approaches require certain assumptions. It is practi-

cally impossible to determine a best parameterization

or a threshold value for each window size in other

modeling approaches. After a preliminary search, we

decided to use a Student’s t distribution with 6 degrees

of freedom for the variance–covariance approach

with Student’s t distribution. Similarly, instead of

determining a threshold value at each step, we utilized

the upper 2.5% of the ranked sample in both adaptive

and nonadaptive GPD approaches. For the historical

simulation, piecewise linear interpolation is chosen

for missing values at certain quantiles.

The relative performance of each model is sum-

marized by a ‘‘violation ratio’’. A violation occurs if

the realized return is greater than the estimated one in

a given day. The violation ratio is defined as the total



Table 5

Models with least underestimation of the risk at different quantiles

in different markets

At a given quantile, we consider only those models that produce an

underestimate of the risk according to the VaR violation ratios. For

example, at 95% quantile (5% at the tail), the expected value of VaR

violation ratio is 5%. A model with a VaR violation ratio greater

than 5 underestimates the risk (produces low return forecasts) while

a value less than 5 implies overestimation (large return forecasts).

We ranked the models that underestimate the risk according to how

close they are to the expected value. If, for instance, the estimated

VaR violation ratios are 5.1%, 5.5% and 6.0% from three different

models at the 5% tail, the model with 5.1% violation ratio is

selected as the best model in terms of least underestimation of the

risk for that tail value. If there is a tie, a model with the second best

performance is selected. T: Student’s t distribution, N: Normal

distribution, H: Historical simulation, E: Generalized Pareto

Distribution (GPD). Notice that the GPD based models perform

better as one moves further in the tail.
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number of violations, divided by the total number of

one step ahead forecasts. The motivation behind this

measure is as follows. When we make a forecast of

the VaR at a certain quantile q, we expect that the

realized return will be higher (1� q) percent of the

time if the model is correct. In other words, the

expected violation ratio at qth percentile is (1� q).

For example, expected violation ratio is 5% at the

95th quantile. A violation ratio higher than the

expected one indicates that the model consistently

underestimates the return ( = risk) at the tail. This is

because the realized returns were higher than the

model’s prediction, resulting in a violation ratio higher

than the expected one. On the other hand, a violation

ratio less than the expected one at a given quantile

implies that the model consistently overestimates the

return at that quantile. For example, suppose that the

violation ratio is zero percent at the 95th quantile.

This means that all realized returns were always less

than the model’s prediction. However, we expect that

the true model should result in 5% violation ratio at

this particular quantile.

It is tempting to think that a small violation ratio is

preferable at a given quantile. However, a small

violation ratio (smaller than the expected one at a

given quantile) may or may not be desirable. As

mentioned above, a smaller violation ratio indicates

an overestimation of the risk. From a risk manage-

ment point of view, estimated return at the right tail

determines the amount of capital that should be

allocated to cover the possible loss (assuming a short

position in the market). Therefore, a smaller violation

ratio (consistent overestimation of the return) signals

an excessive capital allocation (more than necessary)

and the portfolio holder registers a loss of interest rate

income. However, this might be preferable for regu-

latory purposes since a regulatory body is only inter-

ested in an adequate amount of capital in case of

excessive losses. On the other hand, a large violation

ratio (consistent underestimation of the risk) results in

less required capital allocation. If the whole purpose

of VaR estimation is to meet the regulatory require-

ment, a model with large violation ratio is preferable

from a financial institution’s point of view.

In practice, one hardly knows whether a model will

underpredict or overpredict the risk. If the preference

is a model that underpredicts the risk for the reasons

mentioned above (less capital allocation for regulatory
purposes), and if all the models under consideration

are overpredicting it, a model with least overpredic-

tion is preferable. That is, a model with a violation

ratio close to the expected violation ratio from below

is chosen. For example, if there are three models with

3%, 4% and 4.5% violation ratio at the 95th quantile,

the one with 4.5% is preferable since it signals less

capital allocation than others by generating lower

return forecasts at that quantile. On the other hand,

if the preference is a model that overpredicts the risk

(forcing financial institutions to allocate more capital),

and if all the models underpredict it, a model with a

violation ratio close to the expected one from above is

preferable. For example, if there are three models with

5.5%, 6% and 7% violation ratio at the 95th quantile,

the one with 5.5% is preferable since it signals more

capital allocation than others by generating higher

return forecasts at that quantile.

Table 5 illustrates which models perform best in

terms of the least underestimation of the risk at



Table 7

Models with least distance to the expected VaR violation ratios

For example, at 95% quantile (5% at the tail), the expected value of

VaR violation ratio is 5 percent. A model with a VaR violation ratio

closest to 5 is picked up as the best model. Suppose that at 5% tail,

the estimated VaR violation ratios are 4.8%, 5.3% and 4.3% from

three different models. The model with 4.8% violation ratio is

selected as the best model for that tail value. If there is a tie, the

model with a closer second VaR ratio is selected. T: Student’s t

distribution, N: Normal distribution, H: Historical simulation, E:

Generalized Pareto Distribution (GPD). Notice that the GPD based

models perform better as one moves further in the tail.
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different quantiles at both tails of the return distribu-

tions in different emerging markets. At a given

quantile, we consider only those models that produce

an underestimate of the risk according to the VaR

violation ratios. These models are ranked according to

how close they are to the expected value. If, for

instance, the estimated VaR violation ratios are

5.5%, 5.3% and 5.1% from three different models,

the model with the 5.1% violation ratio is selected as

the best model in terms of least underestimation of the

risk for the 95th quantile. If there is a tie between two

models, the one with the second best performance is

chosen. At moderate levels of both tails, there is no

clear winner. However, as we move towards the

higher quantiles such as 99th, 995th and 999th, the

GPD model clearly outperforms others.

In a similar fashion, Table 6 illustrates the best

model in terms of least overestimation of the risk.

Here, we consider only those models that produce an

overestimate of the risk according to the VaR violation

ratios at a given quantile. The models that overesti-

mate the risk are ranked according to how close they
Table 6

Models with least overestimation of the risk at different quantiles in

different markets

At a given quantile, we consider only those models that produce an

exact or an overestimate of the risk according to the VaR violation

ratios. For example, at 95% quantile (5% at the tail), the expected

value of VaR violation ratio is 5%. A model with a VaR violation

ratio greater than 5 underestimates the risk while a value less than 5

implies overestimation. We ranked the models that overestimate the

risk according to how close they are to the expected value. Suppose

that at 5% tail, the estimated VaR violation ratios are 4.5%, 3.5%

and 1% from three different models. The model with 4.5% violation

ratio is selected as the best model for that tail value. If there is a tie,

a model with the second best performance is selected. T: Student’s t

distribution, N: Normal distribution, H: Historical simulation, E:

Generalized Pareto Distribution (GPD). Notice that the GPD based

models perform better as one moves further in the tail.
are to the expected value. Suppose that at the 5% tail,

the estimated VaR violation ratios are 4.5%, 3.5% and

1% from three different models. The model with a

4.5% violation ratio is selected as the best model for

that tail value since it is the one with least overesti-

mation. If there is a tie, the model with the second best

violation ratio is selected. Again, at moderate levels of

both tails, there is no clear winner. However, as we

move towards the higher quantiles, the GPD model is

clearly better.30

Finally, Table 7 provides an overall picture of

relative performance of different models at different

quantiles at both tails of the return distributions. In

this table, a model which produces a violation ratio

with least distance to the expected violation ratio at a

given quantile is picked up as the best model. Espe-

cially at 99th and higher quantiles, the GPD model

clearly dominates others in terms of VaR forecasting

in nine emerging markets we cover in this study. We

conclude that the GPD and the extreme value theory is

an indispensable part of risk management, especially

in the VaR calculations and stress testing.
30 Forecasting results in terms of violation ratios with different

sample sizes at different quantiles for each country are not reported

due to space limitations. The results are available from the authors

upon request.
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5. Conclusions

We investigated the nonlinear estimation and fore-

casting of extreme values of daily stock market

returns in emerging markets. It is shown that the

Generalized Pareto Distribution (GPD) fits the tails

of the return distributions in these markets well. The

results indicate that the daily return distributions have

different characteristics at left and right tails. There-

fore, the risk and reward are not equally likely in

these economies. Estimates of left and right tails at

0.999 percentile along with 95% confidence intervals

show that it is possible to observe over 10% loses in 1

day in all emerging markets, whereas the lower

confidence intervals for the positive returns are less

than 10%, except in Brazil and Turkey. We also

investigated the relative performance of each model

in terms of VaR forecasting in a dynamic setting.

Especially at 99th and higher quantiles, the GPD

model clearly dominates others in terms of VaR

forecasting. We conclude that the GPD and the

extreme value theory are an indispensable part of risk

management in general and the VaR calculations in

particular, in emerging markets.

Emerging market economies are fundamentally

different than developed economies in terms of

changes in dynamic structure of the economy. In other

words, these economies are much more subject to

regime switches in short periods of time. Therefore, it

is quite possible that the underlying probability dis-

tributions of certain variables or the parameters of the

existing distributions change quite often. Any model-

ing exercise in these economies should take into

account this fact and incorporate any changes in the

environment into the modeling. The sliding window

approach in this paper aims at capturing the changing

dynamics in the economy.

There are possible directions for future research.

The daily log returns are calculated in terms of

domestic currency in this study. An international

portfolio holder might be interested in US dollar (or

some other currency) returns. Converting the domes-

tic currency returns into another stable currency

would make the returns comparable among different

economies. It would also (partially) eliminate the

effect of high inflation on the rate of returns. How-

ever, an analysis of stock market returns in dollar

terms combines the dynamics of the stock return in
the economy and the exchange rate and this compli-

cates the analysis. A multivariate approach, as in

Hauksson et al. (2000), should be adopted to have a

complete picture of the risk and reward in the emerging

markets.
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