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Abstract— Supervised reconstruction models are char-
acteristically trained on matched pairs of undersampled and
fully-sampled data to capture an MRI prior, along with super-
vision regarding the imaging operator to enforce data con-
sistency. To reduce supervision requirements, the recent
deep image prior framework instead conjoins untrained
MRI priors with the imaging operator during inference.
Yet, canonical convolutional architectures are suboptimal
in capturing long-range relationships, and priors based on
randomly initialized networks may yield suboptimal per-
formance. To address these limitations, here we introduce
a novel unsupervised MRI reconstruction method based
on zero-Shot Learned Adversarial TransformERs (SLATER).
SLATER embodies a deep adversarial network with cross-
attention transformers to map noise and latent variables
onto coil-combined MR images. During pre-training, this
unconditional network learns a high-quality MRI prior in an
unsupervised generative modeling task. During inference,
a zero-shot reconstruction is then performed by incorporat-
ing the imaging operator and optimizing the prior to max-
imize consistency to undersampled data. Comprehensive
experiments on brain MRI datasets clearly demonstrate the
superior performance of SLATER against state-of-the-art
unsupervised methods.

Index Terms— Adversarial, transformers, MRI, unsuper-
vised, reconstruction, zero shot, generative.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a clinical
powerhouse due to its excellent soft tissue contrast.

Yet, low spin polarization at mainstream field strengths limits
signal-to-noise ratio and necessitates prolonged exams. Exten-
sive MRI exams incur added economic costs and lower use
efficiency, and they may not be possible in uncooperative
patient populations. A dire consequence is administration of
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exams that are in lower quality and/or diversity, which projects
poorly onto diagnostic utility. Accelerated MRI addresses this
fundamental limitation by performing undersampled acqui-
sitions, and then solving an inverse problem to reconstruct
images from available k-space data [1]–[4].

Given their exceptional performance in inverse problems,
supervised neural networks have been quickly adopted for
MRI reconstruction [5]. Reconstruction refers to the task
of mapping undersampled acquisitions to images that are
as consistent as possible with corresponding fully-sampled
acquisitions. Supervised models performing this conditional
mapping are trained on matched pairs of undersampled and
fully-sampled data. The training process involves multiple
lines of supervision including pairing of input-output data
to learn an indirect prior that reduces aliasing artifacts in
MR images [6]–[9], and enforcement of data consistency
to embed the imaging operator that reflects k-space under-
sampling and coil-sensitivity encoding [10]–[14]. Accord-
ingly, supervised models are typically retrained for notable
changes in the data distribution (e.g, different MRI contrast)
or the imaging operator (e.g., different k-space sampling
density) [15]–[17].

Several important approaches have been proposed in liter-
ature to reduce supervision requirements. A group of stud-
ies have reduced explicit supervision related to raw data,
proposing models trained using unpaired sets of input-output
data [18]–[20], or using only undersampled data [21]–[27].
That said, these models involve implicit supervision regarding
the imaging operator. As such, they are trained for a specific
coil-array configuration and k-space sampling density, factors
assumed to be consistent across the training and test sets
[21]–[24]. To remove other supervision aspects, a second
group of studies have built unsupervised models by decoupling
the MRI prior from the imaging operator. These models
capture an MRI prior via generative networks that are either
untrained [28]–[31] or trained to synthesize fully-sampled MR
images [32]–[34]. The imaging operator is then conjoined
with the MRI prior during inference on test data. This unsu-
pervised approach excludes paired datasets for training, and
promises improved generalization against deviations in the
imaging operator [33], [34]. Yet, previously proposed models
are commonly based on convolutional neural networks (CNNs)
that suffer from limited sensitivity in capturing long-range
dependencies [35]–[37].
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Fig. 1. SLATER is based on an unconditional adversarial architecture with a synthesizer (G), a discriminator (D), and a mapper (M). G is a multi-
layer architecture where image resolution is progressively increased across layers. Within intermediate layers, a convolutional upsampling block
is followed by a cross-attention transformer block (see 1). The transformer block receives global and local latent variables, noise variables and
positional encoding (P.E.) for latents and image features. D enables adversarial learning while it receives as input synthetic and actual MR images.
It is composed of convolutional and fully-connected (FC) blocks (see 2, 3). M projects raw latent variables (Z) onto k local (w1, . . . ,wK) variables and
one global (wg) latent variable. It is composed of self-attention and FC blocks (see 3, 4, and Supp. Fig. 1 for details). An unsupervised generative
modeling task is performed using the SLATER model to capture high-quality MRI priors.

Here, we introduce a novel unsupervised MRI recon-
struction based on zero-shot learned adversarial transformers
(SLATER). SLATER decomposes the reconstruction process
to decouple learning of the MRI prior from embedding of
the imaging operator.1 During a pre-training phase, an uncon-
ditional adversarial model is used to synthesize high-quality,
coil-combined MR images (Fig. 1). To improve capture of
long-range spatial context without introducing computational
burden, we propose an architecture comprising cross-attention
transformer blocks between low-dimensional latent variables
and high-dimensional image features. During the inference
phase, the learned MRI prior is combined with the imaging
operator. This is achieved by optimizing network parameters
that reflect the MRI prior to enforce a data-consistency loss
on undersampled test data (Fig. 2). To improve inference
efficiency, a weight propagation strategy is proposed where the
optimized network weights are transferred across consecutive
cross-sections.

The proposed method performs an unsupervised gen-
erative modeling task on coil-combined images derived
from fully-sampled MRI acquisitions. Adapting the gen-
erative model to the reconstruction task without any

1see [38] for a preliminary version of this work presented at ISMRM 2021

training samples, a zero-shot reconstruction then maps under-
sampled data to high-quality MR images during inference.
The decoupled reconstruction process and model adapta-
tion during inference contribute to improved generalization
performance for SLATER. The source code for SLATER
can be found at: https://github.com/icon-lab/SLATER. Sup-
plementary Text, Tables and Figures can be viewed at
https://arxiv.org/pdf/2105.08059.pdf.

Contributions:
• For the first time in literature, we introduce an adversarial

vision transformer model for MRI reconstruction.
• Our proposed model uses cross-attention transformers to

capture long-range spatial dependencies without compu-
tational burden.

• Sample-specific model adaptation and cross-sectional
weight propagation strategies are introduced that respec-
tively enhance out-of-domain generalizability and infer-
ence efficiency.

II. RELATED WORK

Supervised reconstruction models are current state-of-
the-art in MRI with numerous successful architectures
reported including basic CNNs [6], [39]–[41], residual
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Fig. 2. (a) The generative model in SLATER is adapted to perform zero-shot reconstruction for accelerated MRI. To do this, the generator output is
back-projected onto individual coils (C), and masked with the same sampling pattern as in the undersampled acquisition (MΩ). (b) The network prior
consisting of noise (n), latent variables (W) and weights (θG) is then optimized to maximize consistency between the reconstructed and acquired
k-space data.

CNNs [42], [43], perceptrons [17], [44], physics-guided
unrolled CNN networks [7], [10], [11], [14], [45]–[49],
recurrent CNNs [9], [50], [51], generative adversarial
networks (GANs) [52]–[55], and variational networks
[8], [13], [15], [56]. However, supervised models are trained
on paired sets of undersampled and fully-sampled data, along
with supervision regarding the imaging operator in the form of
a data-consistency term. Compiling large sets of paired data is
non-trivial [57], and supervised models often require retraining
to cope with deviations in the imaging operator [17].

To improve utility of deep MRI reconstruction, a common
strategy has been to target explicit supervision on raw data
in order to lower reliance on large, paired training datasets.
Domain-transferred models are trained in a data-abundant
source domain and then adopted for reconstruction in the
target domain [16], [58]. Residual models are trained to
predict residual error between ground truth and the output of a
conventional MRI reconstruction [59], [60]. Both approaches
permit training with relatively few samples, but training
often requires paired datasets. Unpaired models are instead
trained on input-output data collected from separate groups of
subjects. This can be achieved with cycle-consistent models
that learn bidirectional mappings between undersampled and
fully-sampled data in order to enforce self-consistency of
network inputs or outputs [12], [18], [61]. However, unpaired
models can require substantially larger datasets for training
compared to paired models [20]. Lastly, several prominent
approaches were proposed to train unsupervised models in
the absence of ground truth. Scan-specific models learn non-
linear interpolation kernels from an auto-calibration region in
undersampled acquisitions, and then recover missing k-space
samples via interpolation during inference [62]–[64]. These
models do not require a priori training, but their performance
relies on the assumption that local dependencies between

samples are largely invariant across k-space. Self-supervised
models are trained via proxy loss terms substituted for the
true reconstruction loss [21]. Specifically, data-consistency
loss calculated on samples available in undersampled acqui-
sitions can serve as a proxy [22], [23]. An alternative
is to leverage statistical estimators for mean-squared recon-
struction loss [27]. Such estimators are often analytically
derived, so their use might be limited to specific types of
loss functions. Recent studies have also proposed to mask a
subset of k-space samples in undersampled acquisitions, where
the masked subset is used to define a data-consistency loss
[24], [25]. Based on this loss, self-supervised models are
trained to recover masked-out samples from remaining sam-
ples. A related image-domain strategy has been proposed for
multi-image MRI data [26], [65]. In this case, models can be
trained to predict a masked subset of undersampled frames
in dynamic MRI from remaining frames [66], or to map
between differently undersampled versions of a given fully-
sampled acquisition [67]. Because the indirect MRI prior to
reduce aliasing artifacts is learned from undersampled data,
self-supervised models might show suboptimal performance
at high acceleration factors. Moreover, unsupervised methods
that used fixed model weights during inference might suffer
from suboptimal generalization to test data [68], [69].

A collective attribute of the aforementioned methods to limit
supervision on raw data is that they are based on conditional
models that map undersampled acquisitions to MR images.
Thus, they involve inherent supervision regarding the imaging
operator, and they are typically retrained for varying coil-array
configurations and sampling densities [24]. Removing instead
supervision related to the imaging operator, a fundamentally
different approach decomposes the reconstruction process to
decouple the MRI prior from the imaging operator. The deep
image prior (DIP) approach employs an unconditional model
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that maps relatively low-dimensional latent variables onto
images as a native MRI prior [28]. The imaging operator
is embedded during inference, and the prior is adapted to
minimize a data-consistency loss on undersampled test data.
This decoupled approach introduces flexibility in employing
the same prior for various different imaging operators. Yet,
DIP methods pervasively use untrained CNN architectures
with randomly initialized parameters [28]–[31], [70]. In turn,
untrained priors might be suboptimal in capturing the dis-
tribution of MR images [32], [33], and CNN models can
generally suffer from limited sensitivity toward long-range
spatial interactions [35]–[37].

III. THEORY

Inspired by the DIP framework, here we introduce a
reconstruction method for accelerated MRI based on a deep
generative model that maps noise and latent variables onto
MR images. Unlike previous methods, this mapping is based
on a style-generative adversarial network with transformer
blocks. The network learns an MRI prior in pre-training phase,
followed by a zero-shot inference phase where it is adapted
to reconstruct undersampled acquisitions. We first overview
the inverse problem formulation in accelerated MRI and DIP.
We then describe the fundamental building blocks of SLATER.

A. Accelerated MRI Reconstruction

In accelerated MRI, undersampled k-space acquisitions are
performed to speed up scans, typically with variable-density
random sampling patterns:

FpCm = ys (1)

Fp is the partial Fourier operator defined by the sampling
pattern, C denotes coil sensitivities, m is the target MR image
and ys are the acquired multi-coil k-space samples. The target
m must be computed given the available data ys . However,
the linear system in Eq.1 is underdetermined, so MRI recon-
struction is an ill-posed inverse problem. To obtain high-
quality reconstruction, the solution has to be regularized with
additional prior information on MR images:

m̂ = argmin
m

‖ys − FpCm‖2
2 + H (m) (2)

where m̂ is the reconstructed image, and H (m) is the regular-
ization term. The regularization term can be designed based on
sparsity priors [3], [4], structured low-rank priors [71], [72],
or network priors [6].

B. Deep Image Prior

The DIP framework has recently been introduced for unsu-
pervised learning in computer vision tasks, including super res-
olution, inpainting and denoising [73]. DIP observes that local
filtering operations in CNNs constrain the set of images that
can be generated, so untrained CNNs can serve as native image
regularizers. DIP performs random initialization of network
inputs and weights without any pretraining. During inference,
network parameters are optimized by enforcing consistency
with the available corrupted image. Thus, DIP projects the

corrupted image onto the space of CNN-generatable images
to filter out corruptions such as blur or noise. DIP can be
adopted for MRI reconstruction as follows:

θ∗ = argmin
θ

∥∥FpCdθ (z) − ys
∥∥

1 (3)

where θ are network weights, θ∗ are optimized network
weights, z are latent variables, dθ (z) is the network mapping
from latents onto the reconstructed image [14], [28]. Both
network weights and latents are randomly initialized, and the
optimization in Eq.3 is performed over θ , while z is fixed.
In contrast to mainstream learning-based methods, DIP inverts
a random network prior to identify weights that are most
consistent with the corrupted image. The reconstruction can
then be expressed as:

m̂ = dθ∗(z) (4)

Despite its prowess in MRI reconstruction, models with
randomly initialized parameters setup a generic image prior
that may not be as strongly-tuned towards the distribution
of MR data as trained models [32]. Furthermore, DIP is
traditionally based on CNN architectures, where local kernels
introduce suboptimal sensitivity in capture of long-range spa-
tial interactions [35].

C. Adversarial Transformer Model

SLATER is based on an unconditional adversarial net-
work that receives noise and latent variables to generate MR
images [38]. Here we adopt a style-generative architecture
given the success of this model family in computer vision
tasks [74]. We further propose to build the network layers
with cross-attention transformer blocks as inspired by a recent
study on natural image synthesis [75]. Self-attention trans-
formers that compute interactions among all image pixels are
prohibitive at relatively high spatial resolutions [36], [76], [77].
Instead, cross-attention transformers enable efficient capture of
long-range context based on attentional interactions between
low-dimensional latent variables and high-dimensional image
features. Our model contains three sub-networks (Fig.1):
a synthesizer that generates MR images; a mapper that pre-
pares the set of latent variables input to the synthesizer; and
a discriminator. The synthesizer aims to generate realistic
images, while the discriminator aims to distinguish actual
images from synthesized images. Thus, the discriminator aids
the synthesizer in capturing an MRI prior that reflects the
distribution of high-quality MR images.

1) Synthesizer (G): The synthesizer contains a total of NL

layers, each comprising a convolutional upsampling block to
progressively increase image resolution followed by a cross-
attention transformer block. Prior style-generative models typ-
ically use a global latent variable at each layer to control
high-level image features related to style [74]. In SLATER,
in addition to a global latent (wg ∈ R

Ls , Ls : dimen-
sionality), the synthesizer receives as input K local (Wl ∈
R

K×Ls ) latent variables at each layer. The global latent is
still used to perform a spatially-uniform affine transformation
of convolutional feature maps, and so it modulates high-
level image features. Meanwhile, local latents are used to
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Fig. 3. Cross-attention maps in SLATER for a T1-weighted acquisition.
Sample maps from the first CA sub-block are displayed by overlay
onto the respective MR image across three resolutions (i.e., at network
layers 4-6). Attention maps for separate latents typically show segregated
spatial distribution, and tend to group tissue clusters with similar signal
intensity and texture broadly distributed across the image.

perform spatially-selective modulation of feature maps via
cross-attention mechanisms. Each local latent variable focuses
on a learned group of feature-map locations, so local latents
serve to modulate relatively lower-level image features. For
enabling cross-attention mechanism, a sinusoidal position
encoding is used for spatial feature maps, whereas a learnable
position encoding is assumed for local latent variables as their
positions are unknown prior to training. Each cross-attention
transformer block contains a serial cascade of the following
sub-blocks: (cross-attention (C A1), noise injection (N I 1),
style-modulated convolution (SC), cross-attention (C A2),
noise injection (N I 2)). These sub-blocks are detailed below.

a) Cross-attention (CA1): CA derives contextual represen-
tations by mediating attentional interaction between Wl and
input feature maps X0

i ∈ R
h1×h2×u , where h1 and h2 denote

height and width depending on the resolution at the i th

layer, and u is the number of feature channels. Let X0
i,vec ∈

R
(h1×h2)×u be the vectorized form of X0

i along the spatial

dimensions. Attention maps Ã1
i,maps ∈ R

(h1×h2)×K that char-
acterize the relation between Wl and X0

i,vec are as follows (see
Fig. 3 and Supp. Fig. 2 for sample maps):

Ã1
i,maps = smax

⎛⎝ q̃i
1(X0

i,vec + P E1
i,X )k̃i

1
(Wl + P EWl )

T

√
u

⎞⎠
(5)

where smax is the softmax function, q̃i
1(.) ∈ R

(h1×h2)×u

are queries that receive X0
i,vec added with layer-specific posi-

tion encoding variables P E1
i,X ∈ R

(h1×h2)×u and perform

a learnable linear projection, k̃i
1
(.) ∈ R

K×u are keys that

receive Wl added with position encoding variables P EWl ∈
R

K×Ls and perform a learnable linear projection. P E1
i,X are

taken as learnable linear projections of pre-defined sinusoidal
encoding variables (see Supp. Text I-A), while P EWl are
randomly initialized learnable position encoding variables.
Note that P E1

i,X and A1
i,maps are vectorized along the spatial

dimensions. Attention feature maps ( Ã1
i, f eat ∈ R

(h1×h2)×u)
are then obtained by multiplying A1

i,maps with values that are

learnable linear projections (ṽi
1(.) ∈ R

K×u ).

Ã1
i, f eat = Ã1

i,maps ṽi
1(Wl + P EWl ) (6)

Lastly, input feature maps are modulated via a single atten-
tion head that scales and shifts X0

i,vec with learnable linear
projections of Ã1

i, f eat to output X1
i,vec ∈ R

(h1×h2)×u .

X1
i,vec = γ̃1( Ã1

i, f eat ) �
(

X0
i,vec − μ(X0

i,vec)

σ (X0
i,vec)

)
+ b̃1( Ã1

i, f eat )

(7)

where γ̃1(.) ∈ R
(h1×h2)×u and b̃1(.) ∈ R

(h1×h2)×u are learnable
linear projections, μ denotes mean, σ denotes variance, and �
is the Hadamard product. The mapping through C A1 can thus
be summarized as: X1

i = C A1(X0
i ), where X1

i ∈ R
h1×h2×u is

the matrix form of X1
i,vec.

b) Noise injection (NI1): To improve control over variability
in fine details of feature maps, noise variables are injected
onto modulated feature maps from C A1. Given input X1

i ∈
R

h1×h2×u to N I 1, the output (X2
i ∈ R

h1×h2×u) can be
expressed as:

X2
i =

⎡⎢⎢⎢⎢⎢⎢⎣
X1,1

i + α1
i n1

i

...

X1,u
i + α1

i n1
i

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

where X1,e
i ∈ R

h1×h2 denotes eth channel of X1
i , n1

i ∈ R
h1×h2

is noise added to each eth channel and α1
i is a learnable

scalar. Note that the learnable noise variables in n1
i are initiated

via random sampling from a standard normal distribution for
each spatial location. During the course of learning, mean
and standard deviation of noise variables are normalized to
(0, 1) across the spatial dimensions. The final mapping through
N I 1 is expressed as: X2

i = N I 1(X1
i ).

c) Style modulated convolution (SC): Transformer
blocks characteristically contain a feed-forward neural
network (FFNN) sub-block following the attention sub-block
to extract hidden features of attention-based contextual
representations. For computational efficiency, here a
convolutional FFNN is utilized to locally refine contextual
representations while modulating feature maps to control
high-level style features [74]. Analogous to adaptive instance
normalization (AdaIN) in style-transfer models, modulation
is achieved via an affine transformation that controls the
scale of feature maps [78]. Yet, we opted for a more compact
implementation based on style-modulated convolution, with
comparable complexity to convolution augmented with
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AdaIN and only requiring a trivial scaling operation over
basic convolution [74]. Accordingly, feature maps are scaled
by modulating convolution kernels in SC, where kernel
weights are multiplied via a learnable linear projection
wi,s ∈ R

u of the global latent variable wg:

θ ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
i,sθ

1,1
i w1

i,sθ
1,2
i . . . w1

i,sθ
1,u
i

w2
i,sθ

2,1
i w2

i,sθ
2,2
i . . . w2

i,sθ
2,u
i

...
...

. . .
...

wu
i,sθ

u,1
i wu

i,sθ
u,2
i . . . wu

i,sθ
u,u
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where θ e,h
i ∈ R

r×r denotes the two-dimensional (2D) kernel
for eth input and hth output channel, we

i,s is the scaling
coefficient for eth input channel. Note that θ ′

i ∈ R
r×r×u×u

is a 4D tensor of modulated kernels, so the matrix expression
in Eq. 9 depicts formation along the third and fourth tensor
dimensions. While convolution with the modulated kernels
changes the relative scaling of input feature channels for
controlling style, it can also alter the overall scale of the output
feature map for each channel. To restore output feature maps to
unit standard deviation, the modulated kernels are normalized
to unit-norm across the output channel dimension. Following
the notation in Eq. 9, this normalization can be expressed as:

θ ′′
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ
′1,1
i√∑

c(θ
′c,1
i )2

θ
′1,2
i√∑

c(θ
′c,2
i )2

. . .
θ

′1,u
i√∑

c(θ
′c,u
i )2

θ
′2,1
i√∑

c(θ
′c,1
i )2

θ
′2,2
i√∑

c(θ
′c,2
i )2

. . .
θ

′2,u
i√∑

c(θ
′c,u
i )2

...
...

. . .
...

θ
′u,1
i√∑

c(θ
′c,1
i )2

θ
′u,2
i√∑

c(θ
′c,2
i )2

. . .
θ

′c,u
i√∑

c(θ
′c,u
i )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where θ ′′
i ∈ R

r×r×u×u denotes de-modulated kernels and c
corresponds to channel index. Finally, the output feature maps
(X3

i ∈ R
h1×h2×u ) can be computed as:

X3
i =

⎡⎢⎢⎣
∑

c X2,c
i � θ

′′c,1
i

...∑
c X2,c

i � θ
′′c,u
i

⎤⎥⎥⎦ (11)

where X2,c
i ∈ R

h1×h2 are input feature maps, � is convolu-
tion. The mapping through the convolution sub-block SC1 is
expressed as: X3

i = SC(X2
i ).

d) Cross-attention (CA2): A second cross-attention sub-
block is used following the SC sub-block to further boost
sensitivity of the model to global context. This maps the
output of the SC sub-block to attention-modulated feature
maps (X4

i ∈ R
h1×h2×u) as: X4

i = C A2(X3
i ).

e) Noise-injection (NI2): Finally, noise variables are
injected to control variability in the fine details of feature maps
following the second CA sub-block: X5

i = N I 2(X4
i ). where

X5
i ∈ R

h1×h2×u is the output of N I 2.
2) Mapper (M): The mapper projects independent

and identically distributed random variables (Z =
z1, z2, . . . , zK , zg; z ∈ R

1×Ls ) onto a refined set of local and
global latent variables (w1, w2, . . . , wK , wg; w ∈ R

1×Ls )
expected by the synthesizer [74]. M is a multi-layered
architecture comprising a first stream dedicated to the global
latent and a second stream of dedicated to local latents (see
Supp. Fig. 1). The global latent is processed with a cascade
of fully-connected layers [74]. Local latents are instead
processed with self-attention blocks to enable interactions
among these variables. Self-attention blocks contain a cascade
of self-attention (SA), fully-connected (FC1), fully-connected
(FC2) sub-blocks as detailed below.

a) Self-attention (SA): At the i th self-attention block, inter-
mediate activations for the K latent variables are concatenated
as input:

Z0
i = (z1 ⊕1 · · · ⊕1 zK )0

i (12)

where Z0
i ∈ R

K×Ls and ⊕1 is the concatenation operator along
the first dimension. Attention maps ( Âi,maps ∈ R

K×K ) are first
obtained:

Âi,maps = smax

(
q̂i (Z0

i + P EZ0)k̂i (Z0
i + P EZ0)T

√
Ls

)
(13)

where P EZ0 ∈ R
K×Ls denotes learnable position encoding

variables, q̂i (.) ∈ R
K×Ls and k̂i (.) ∈ R

K×Ls are queries and
keys respectively. Attention feature maps ( Âi, f eat ∈ R

K×Ls )
are given as:

Âi, f eat = Âi,maps v̂i (Z0
i + P EZ0) (14)

where v̂i (.) ∈ R
K×Ls are values. Âi, f eat is then used to scale

and shift Z0
i :

Z1
i = γ̂ ( Âi, f eat ) �

(
Z0

i − μ(Z0
i )

σ (Z0
i )

)
+ b̂( Âi, f eat ) (15)

where Z1
i ∈ R

K×Ls is the output, γ̂ (.) and b̂(.) are learnable
linear projections. Lastly, Z1

i is decomposed into individual
latents, Z1

i → {z1, . . . , zK }1
i .

b) Fully connected (FC): Next, each latent is separately
processed with two fully-connected sub-blocks (FC1 and
FC2): {

z j
}2

i = FC2(FC1(
{
z j

}1
i )) (16)

where
{
z j

}2
i ∈ R

1×Ls is the output FC2 for the j th local
latent.

3) Discriminator (D): Adversarial models involve an inter-
play between the synthesizer that generates images and a
separate discriminator sub-network [79]. In SLATER, D aims
to accurately distinguish images generated by the synthe-
sizer from actual MR images. A feed-forward architecture
is employed here with a cascade of convolutional layers
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augmented with several fully-connected layers. The mapping
through D can be compactly expressed as:

xD = DθD (x) (17)

where xD ∈ R
1 is the output of the discriminator, and x is

either an actual MR image (xr ) or an image generated by the
synthesizer G(M(Z)).

D. Self- Versus Cross-Attention Transformers

The main components of vanilla transformers are a self-
attention (SA) sub-block followed by a feed-forward neural
network (FFNN) sub-block [36]. Self-attention mechanisms
serve to explicitly relate different positions within an image to
compute contextual representations at each image pixel. Thus,
SA is the primary component that learns long-range depen-
dencies, while FFNN performs nonlinear transformations to
extract hidden features of attention-based contextual represen-
tations. While vanilla transformers with fully-connected FFNN
are common in natural language processing [80], computer
vision studies often introduce vision-specific modifications for
computational efficiency [75]. Cross-attention transformers in
SLATER involve two key modifications: cross-attention sub-
blocks that use a compact set of latents implicitly relating
image pixels to learn contextual representations, and a con-
volutional FFNN to improve computational efficiency. Here,
we overview self-attention and cross-attention transformers in
terms of their ability to capture long-range spatial relationships
and model complexity. For simplicity, remaining operations
in transformers such as normalization or skip connections
are ignored, and only a single feature channel and a single
attention head are considered.

1) Self-Attention Transformer: Given an input feature map
X0

vec ∈ R
(h1×h2), let a, b be two distant pixels whose r × r

neighborhoods �a,�b do not spatially overlap. A convolution
sub-block with kernel size r would perform localized process-
ing for each pixel in its r × r neighborhood:

X1
vec = Conv(X0

vec) (18)

where X1
vec ∈ R

(h1×h2). Intensities of a, b in X1
vec will thus be

conditionally independent given intensities of X0
vec in �a,�b:

E{X1
vec[a]X1

vec[b] | Xc} = E{X1
vec[a] | Xc}E{X1

vec[b] | Xc}
(19)

where E{.} denotes expectation, Xc = X0
vec[�a∪�b] and ∪ is

the union operator. As a result, convolutional processing does
not leverage long-range relationships in feature maps.

In contrast, the SA sub-block in a transformer characterizes
the relation between all spatial locations in X0

vec ∈ R
(h1×h2)

via an attention map:
Amaps = smax

(
q(X0

vec + P EX )k(X0
vec + P EX )T

)
(20)

where P EX , q, k ∈ R
(h1×h2) are positional encoding, query,

and key, and Amaps ∈ R
(h1×h2)×(h1×h2). Attention-modulated

feature map is then derived:
A f eat = Amapsv(X0

vec + P EX ) (21)

where A f eat ∈ R
(h1×h2), and v ∈ R

(h1×h2) is value. Intensities
of A f eat at pixels a, b are:

A f eat [a] = Amaps[a, 1 : (h1 × h2)] v[1 : (h1 × h2)]
A f eat [b] = Amaps[b, 1 : (h1 × h2)] v[1 : (h1 × h2)] (22)

As seen here, both A f eat [a] and A f eat [b] are functions of
all pixels in v and thereby X0

vec. Next, the FFNN sub-block
processes A f eat to extract hidden representations, typically via
a fully-connected architecture:

X1
vec = FC(A f eat ) (23)

where X1
vec ∈ R

(h1×h2). Note that A f eat [a] and A f eat [b] are
readily dependent on all pixels. Intensities of pixels a, b in
output feature maps are then statistically dependent even when
conditioned on Xc = X0

vec[�a ∪ �b]:
E{X1

vec[a]X1
vec[b] | Xc} �= E{X1

vec[a] | Xc}E{X1
vec[b] | Xc}

(24)

Thus, vanilla transformers utilize dependencies across distant
pixels to compute contextual representations.

The SA sub-block examines interactions among all possible
pairs of pixels as described in Eqs. 20 and 22, so it has a
computational complexity of O((h1 × h2)

2). Likewise, the
FFNN sub-block as described in Eq. 23 exhaustively considers
inter-pixel interactions with a complexity of O((h1 × h2)

2).
This quadratic complexity with respect to image size limits the
applicability of self-attention transformers at relatively high
resolutions encountered in MRI [36].

2) Cross-Attention Transformer: Instead of exhaustively
modeling inter-pixel interactions in high-dimensional feature
maps, the CA sub-block uses a small set of K latent variables
to implicitly characterize these interactions:

Amaps = smax
(

q(X0
vec + P EX )k(Wl + P EWl )

T
)

(25)

where Amaps ∈ R
(h1×h2)×K , Wl ∈ R

K×Ls : local latent vari-
ables, P EWl ∈ R

K×Ls : positional encoding for Wl . Attention-
modulated feature map can be expressed as:

A f eat = Amapsv(Wl + P EWl ) (26)

where A f eat ∈ R
(h1×h2), and v ∈ R

K is value. In turn,
intensities of pixels a, b are:

A f eat [a] = Amaps[a, 1 : K ] v[1 : K ]
A f eat [b] = Amaps[a, 1 : K ] v[1 : K ] (27)

As seen above, both A f eat [a] and A f eat [b] are functions of
all latent variables in Wl , so they are statistically dependent.

Next, a convolutional FFNN processes A f eat to extract
hidden representations:

X1
vec = Conv(A f eat ) (28)

where X1
vec ∈ R

(h1×h2). Although convolutional processing is
local, the dependency introduced in the CA sub-block carries
over to the output feature maps:
E{A f eat [a]A f eat [b] | Xc} �= E{A f eat [a] | Xc}E{A f eat [b] | Xc}

E{X1
vec[a]X1

vec[b] | Xc} �= E{X1
vec[a] | Xc}E{X1

vec[b] | Xc}
(29)
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Therefore, cross-attention transformers can model long-range
dependencies to compute contextual representations.

The CA sub-block examines interactions among image
pixels and local latents as described in Eqs. 25 and 27,
so it has a computational complexity of O((h1 × h2) × K ).
The convolutional FFNN considers local interactions with a
complexity of O((h1 × h2) × r2). Because K � (h1 × h2)
and r2 � (h1 × h2) typically, the cross-attention transformer
achieves notably lower complexity to permit use at higher
spatial resolutions.

E. Learning Procedures

SLATER uses a two-stage strategy towards MRI reconstruc-
tion with a pre-training phase to learn the MRI prior, followed
by a zero-shot reconstruction phase to embed the imaging
operator. These two phases are detailed below.

1) Pre-Training of the MRI Prior: Since SLATER completely
decouples the MRI prior from the imaging operator, pre-
training assumes no prior knowledge on the imaging operator
such as undersampling patterns or coil sensitivity encoding.
Instead, the adversarial transformer model is trained to capture
a prior on coil-combined, complex MR images, derived from
fully-sampled acquisitions. Note that the synthesizer in this
unconditional model maps noise and latent variables onto
MR images, unlike conditional models with explicitly defined
input-output relationships (i.e. undersampled versus fully-
sampled data). Therefore, SLATER’s pre-training is catego-
rized as an unsupervised generative modeling task where the
distribution of MR images is learned so that new, random
samples can be drawn from the distribution [81].

Adversarial models commonly involve synthesizer and dis-
criminator sub-networks that are trained with inter-linked loss
functions to improve quality of synthesized images [79].
In SLATER, the synthesizer along with the mapper that
provides latent variables are trained to minimize a common
adversarial loss based on non-saturating logistic function:

LG,M (θG , θM ) = −Ep(Z){log( f (D(GθG (MθM (Z))))} (30)

where Ep(.) is expectation with probability density p, f (.) is
the sigmoid function, θG are parameters of the synthesizer,
θM are parameters of the mapper. This particular loss is
preferred in order to prevent the saturation problem in adver-
sarial learning, where the discriminator starts outperforming
the synthesizer by a significant margin and learning stops
prematurely [79].

Meanwhile, the discriminator is trained to minimize an
adversarial loss based on non-saturating logistic function aug-
mented with a gradient penalty term:

L D(θD) = −Ep(Z){log(1 − f (DθD (G(M(Z))))}
− Ep(xr ){log( f (DθD (xr ))}
+ η

2
Ep(xr ){

∥∥∇DθD (xr )
∥∥2} (31)

where xr denotes coil-combined, complex MR images derived
from actual scans, η is the regularization parameter, and θD are
the parameters of the discriminator. The first two terms define
the adversarial loss, whereas the third term has been suggested

to improve adversarial learning by enforcing limited gradients
in xr according to the learned distribution [82].

2) Zero-Shot Reconstruction: The learned MRI prior does
not contain any information regarding the conditional mapping
from undersampled to fully-sampled data. Thus, the prior is
conjoined with the imaging operator during inference to recon-
struct test data. To adapt the pre-trained generative model to
the reconstruction task, a data-consistency loss is employed on
undersampled acquisitions to optimize synthesizer parameters
(Fig. 2). Note that zero-shot learning is an unsupervised task-
adaptation approach, where a model trained for an initial task
is later transferred to a different target task without using
additional training samples [83]. Analogously, SLATER adapts
its adversarial model pre-trained to perform generative mod-
eling of MR images to perform MRI reconstruction without
any extra training samples. Therefore, the inference phase of
SLATER is categorized as zero-shot reconstruction.

During inference, we optimize all components of the synthe-
sizer including noise (n), latent variables (W ) and weights (θG)
to minimize the data-consistency loss. The synthesizer outputs
a coil-combined, complex MR image, which is back-projected
onto individual coils given sensitivity estimates, and then
Fourier transformed to select available k-space coefficients
according to the undersampling pattern [55]. Consistency of
acquired and reconstructed k-space coefficients in the test data
is then computed:
L R̂(W, n, θG ) = λ1

∥∥FpCG(W, n, θG ) − kx
∥∥

1

+ λ2
∥∥FpCG(W, n, θG ) − kx

∥∥
2 (32)

where R̂: reconstructed image, kx : acquired k-space coef-
ficients, Fp: partial Fourier operator, G: synthesizer. Data
consistency is taken as a weighted 	1 − 	2-norm loss, where
(λ1, λ2): weightings of (	1, 	2) loss components. This loss
function is considered to offer a more balanced weighting of
errors across k-space compared to 	2-norm that can be over-
sensitive to lower spatial frequencies [24]. During pre-training,
a common set of latent variables produced by the mapper are
input uniformly across all CA and SC sub-blocks, whereas
sub-block specific noise is included. To improve performance
during zero-shot reconstruction, latent variables for each sub-
block within each layer are instead segregated for independent
optimization. In Eq. 32, W = W1,..,NL where Wi denotes the
collection of latent variables for the i th layer and contains
the local latents for the two CA sub-blocks (W 1,2

l,i ) and the
global latent for the SC sub-block (wg,i ); n = n1,..,NL where
ni denotes the collection of noise components for the i th layer
and contains noise for the two NI sub-blocks (n1,2

i ).

IV. METHODS

A. Network Architecture

Architecture of SLATER’s synthesizer, mapper and discrim-
inator are described below (see also Supp. Text I-B).

1) Synthesizer: The synthesizer is a multi-layer architecture
where image resolution is progressively increased. Each layer
comprises a convolutional upsampling block to increase image
resolution by a factor of 2 followed by a cross-attention
transformer block, and a skip connection to add the upsampled
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input. The first layer receives a constant input randomly drawn
from a standard normal distribution. As the input layer, the
first layer does not contain the upsampling blocks and the
first attention sub-block is replaced with an identity transfor-
mation. The last layer calculates the final synthesizer output.
Attention sub-blocks are omitted in the last layer to preserve
precise localization in high-resolution images with convolution
operators, as contextual representations have been extracted in
previous layers [36]. Two separate channels are used to output
real and imaginary parts of images. The upsampling block
uses transpose convolution, and upsampling and modulated
convolutions have a kernel size of 3 × 3. The cross-attention
transformer block contains a cascade of cross-attention and
convolutional sub-blocks. The fully-connected sub-block in
vanilla transformers is replaced with a convolutional sub-
block to improve computational efficiency and permit use at
high resolutions. Since the convolutional sub-block inherently
focuses on local relationships, a second cross-attention block
is used to reinforce long-range interactions. Note that the
imaging matrix sizes differ between the IXI and fastMRI
datasets analyzed here. The number of synthesizer layers was
adjusted accordingly. The resolution of the final layer was set
to 256 × 256 for IXI with a total of seven layers, whereas the
resolution of the final layer was set to 512 × 512 for fastMRI
with a total of eight layers. During unsupervised pretraining,
MR images were zero-padded to the resolution of the final
layer. During inference, the output of the synthesizer was
cropped to match the matrix size of the MRI acquisition.

2) Mapper: The mapper comprises two streams of multi-
layer architectures for processing local and global latent vari-
ables. The local stream has a total of five layers, with the
first four containing a self-attention sub-block and the last
containing a fully-connected sub-block. The global stream
has a total of nine layers, each containing fully-connected
sub-blocks.

3) Discriminator: The discriminator aggregates information
across multiple spatial scales in a multi-layered architecture.
Real and imaginary parts of synthesized and actual MR images
are represented in separate channels. Each layer comprises
a convolution block followed by downsampling by a factor
of 2 and a skip connection to add the downsampled input.
The downsampling block uses convolution with a kernel size
of 3 ×3. The resolution of the first layer was set to 256 ×256
for IXI with a total of seven layers, and 512×512 for fastMRI
with a total of eight layers.

B. Competing Methods

SLATER was comparatively demonstrated against
state-of-the-art techniques based on supervised and
unsupervised models, as well as a traditional method.
For each technique, hyperparameter optimization was
performed via cross-validation on a three-way split of
subjects. Optimization was performed for number of epochs,
number of inference iterations, and weights for regularization
terms based on performance on the validation set. For
supervised models, performance in the validation set was
quantified as 	2-norm difference between the reconstructed

and fully-sampled ground-truth images. For unsupervised
models, validation performance was instead quantified as
the 	2-norm difference between reconstructed and available
k-space samples in undersampled acquisitions. A single set
of hyperparameters yielding near-optimal results in all tasks
were selected for each technique. Please see Supp. Fig. 3
for sample performance curves in the validation set versus
number of training epochs where training was continued up
to 1500 for methods that perform generative modeling of MR
images. During inference on test data, strict data consistency
was enforced to the network outputs. Codes were run on an
eight-core Intel Xeon E5-2690v3 CPU for LORAKS, and in
parallel on five nVidia 2080 Ti GPUs for all network models.

1) SLATER: SLATER was first pretrained to map random
noise and latent codes onto high-quality MR images. In the
IXI dataset, the model was trained to map onto single-coil
magnitude images. In fastMRI dataset, the model was instead
trained to map onto coil-combined complex images, with real
and imaginary channel outputs. To do this, coil sensitivity
maps were derived via ESPIRiT with default parameters [84].
Using these estimates, an optimal linear combination on multi-
coil complex images was then performed [85]. Pre-training
was performed via the Adam optimizer with β1:0.0, β2:0.99,
η = 10 and a learning rate of 0.001 as adopted from [74].
The dimensionality of latent variables were set as K=16
and Ls=32. Network weights were randomly initialized using
a standard normal distribution. Inference was performed via
the RMSprop optimizer with learning rate 0.1, momentum
parameter 0.9, early-stopping and learning rate schedule as
adopted from [74]. Cross-validation indicated 1000 iterations
as a favorable early-stopping point for maintaining near-
optimal performance and computational efficiency. For IXI,
470th pretraining epoch, λ1 = 1.0, λ2 = 0.0 were selected.
For fastMRI, 1280th pretraining epoch, λ1 = 0.5, λ2 = 0.5
were selected. Separate SLATER models were trained to
build MRI priors for each tissue contrast within each dataset.
Reconstruction was then performed via inference on individual
test data conditioned by the MRI prior.

2) LORAKS: A traditional parallel-imaging reconstruction
based on low-rank modeling of local k-space neighborhoods
was performed [86] via libraries in the LORAKS V2.1 tool-
box [87]. Here, an autocalibrated reconstruction was per-
formed where the structured low-rank matrix was formed
based on limited image support assumption [86]. Accordingly,
the k-space neighborhood radius and the rank of the resultant
matrix were selected via cross-validation as: (2,6) for IXI, and
(2,30) for fastMRI.

3) GANsup: A fully-supervised conditional generative adver-
sarial network (GANsup) was trained using paired ground-truth
and undersampled acquisitions. Network architecture and loss
functions were adopted from [55]. Training was performed
via the Adam optimizer with β1 = 0.5, β2 = 0.999, dropout
regularization rate 0.5, and a learning rate of 0.0002. Training
was continued over 100 epochs, with learning rate schedule
from [55]. Network weights were randomly initialized using
a normal distribution with zero mean and 0.02 standard devi-
ation. Regularization parameters for (pixel-wise, perceptual,
adversarial) losses were selected as (100,100,1). A separate
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GANsup model was trained for each contrast within each
dataset and acceleration rate.

4) SSDU: A self-supervised version of the conditional GAN
model in GANsup was trained on undersampled data [24].
Acquired k-space samples were split into two sets of nonover-
lapping points, where 60% of samples were used to estimate
model weights and 40% were used to define the network
loss. Analogous to Eq. 32, the network loss was taken as
a weighted sum of 	1-, 	2-norm differences between recov-
ered and acquired k-space samples. For both datasets, λ1 =
1.0, λ2 = 0.0 were selected. All other procedures were
identical to GANsup. Separate SSDU models were trained for
each contrast within each dataset and acceleration rate.

5) GANprior: Following [32], unsupervised pretraining on
fully-sampled MRI data was performed using an uncondi-
tional GAN. Network architecture was adopted from [74]
for fair comparison against SLATER. Training and inference
procedures were identical to SLATER with minor modifica-
tions for enhanced performance. The synthesizer in GANprior
was trained to minimize the same loss as in Eq. 30 with
an additional path length regularization parameter adopted
from [74]. The discriminator was trained to minimize Eq. 31.
A matching number of latents to SLATER were prescribed
with Ls=512. For IXI, 60th pretraining epoch, λ1 = 1.0, λ2 =
0.0 were selected. For fastMRI, 180th pretraining epoch, λ1 =
1.0, λ2 = 0.0 were selected. Separate GANprior models were
trained for each contrast within each dataset.

6) SAGAN: Zero-shot learned reconstructions were also
implemented using a self-attention GAN model. The net-
work architecture was adopted from [74] for fair comparison.
Training and inference procedures were identical to SLATER.
Optimization of network weights was not performed as it
was observed to degrade reconstruction performance. Instead
contrast-specific epoch selection was adopted for SAGAN
since in this case it yielded enhanced performance. For T1
and T2 reconstructions, 798th, 399th epochs in IXI, and 967th,
2661th epoch in fastMRI, along with λ1 = 1.0, λ2 = 0.0 were
selected. Separate models were trained for each contrast within
each dataset.

7) GANDIP, SAGANDIP, SLATERDIP: DIP reconstructions
were performed via untrained GANprior, SAGAN and SLATER
models respectively. The inference procedures were identical
to pre-trained counterparts. Network weights were randomly
initialized using a normal distribution with zero mean and unit
standard deviation.

C. Datasets

Demonstrations were performed on single-coil brain MRI
data from IXI (http://brain-development.org/ixi-dataset/) and
multi-coil brain MRI data from fastMRI [88]. T1-weighted
and T2-weighted acquisitions were considered. In IXI, 25 sub-
jects were used for training, 5 for validation and 10 for
testing. Parameters for T1-weighted scans are: repetition time
(TR)=9.813 ms, echo time (TE)=4.603 ms, flip angle=8◦,
matrix size=256 × 256×150, voxel size=0.94 × 0.94 ×
1.2 mm3; and those for T2-weighted scans are: TR=8178 ms,
TE=100 ms, flip angle=90◦, matrix size=256 × 256×130,

Fig. 4. Cross-attention maps in SLATER for a simulated phantom with
varying levels of normally-distributed white noise. Sample maps from the
first CA sub-block are displayed at 128×128 resolution (network layer 6).
Relative to a peak signal intensity of 1, top, middle and bottom rows show
results for no noise, noise variance of 0.01, and noise variance of 0.1,
respectively.

voxel size=0.94 × 0.94 × 1.2 mm3. In fastMRI, 100 subjects
were used for training, 10 for validation and 40 for testing.
Data from multiple sites are included with no common pro-
tocol. For consistency, only volumes with at least 10 cross-
sections and acquired with at least 5 coils were selected.
To reduce computational complexity, GCC [89] was used to
decrease the number of coils to 5. For both datasets, sub-
ject selection and splitting was done sequentially. Data were
retrospectively undersampled using variable-density random
patterns [3]. Undersampling masks were generated based on
a 2D normal distribution with covariance adaptively adjusted
to obtain the desired acceleration rates of R=[4, 8].

D. Quantitative Assessments

To assess reconstruction quality, quantitative comparisons
were performed against reference images Fourier-
reconstructed from fully-sampled acquisitions. Both
reconstructed and reference images were normalized to
a maximum of 1 prior to measurement. Peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) were
calculated between the reconstructed and reference images.
In Tables, summary statistics for quantitative metrics were
provided as mean ± standard deviation across test subjects.
Statistical significance of differences between methods was
assessed via nonparametric Wilcoxon signed-rank tests.

V. RESULTS

A. Cross-Attention Transformers

We first examined the utility of cross-attention transformers
in capturing contextual representations via experiments on a
simulated phantom. The phantom had numerical digits of unit
intensity on four corners against a zero-intensity background
(Fig. 4). This design creates a strong dependency among digit
pixels in distant corners, and separately among background
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Fig. 5. Reconstructions of a representative T2-weighted acquisition at R=4 are shown for the Fourier method (ZF), DIP methods (GANDIP,
SAGANDIP, SLATERDIP) and zero-shot reconstructions (GANprior, SAGAN, SLATER) along with the reference image. Zoom-in display windows are
added to aid visualization of performance differences. Corresponding error maps are underneath the images for each method.

pixels. Normally-distributed white noise was added to vary the
degree of contextual information present in phantom images
by dampening inter-pixel correlations. DIP reconstructions
at R=4 were then performed using SLATER. The spatial
distribution of cross-attention maps in Eq. 5 characterize
learned groupings of correlated pixels. Thus, we reasoned that
the attention maps for local latent variables should span over
distant albeit correlated image pixels for relatively limited
noise levels, and the maps should degrade for higher noise
levels due to weakened dependencies. To test this prediction,
we inspected the attention maps for the phantom image in
Fig. 4 (see Supp. Fig. 4 for details). As expected, attention
maps clearly span across digit pixels or across background
pixels for limited noise. Note that attention maps learned
on brain images also manifest similar grouping of correlated
albeit spatially-distant pixels (see Fig. 3 and Supp. Fig. 2
for representative maps). Yet, towards substantially higher
noise levels in the simulated phantom, attention maps show
a less clear grouping structure as contextual information is
gradually weakened. Taken together, these results suggest that
SLATER can capture long-range spatial interactions among
distant image pixels.

B. Model Invertability

During inference on test data, SLATER inverts its generative
model to identify noise, latents and network weights that
are most consistent with the undersampled MRI acquisition.
To evaluate model invertability, we compared SLATER against
CNN-based and self-attention GAN models. Each model was
used in both DIP and zero-shot reconstructions. Representative
results on T1- and T2-weighted acquisitions from IXI at R=4
are displayed in Fig. 5 and Supp. Fig. 5 respectively. DIP
reconstructions tend to suffer from visible loss of spatial
resolution, and GANprior and SAGAN have elevated noise and
artifacts. In contrast, SLATER yields low residual errors and

high visual acuity. Performance metrics are listed in Table I.
SLATER achieves superior performance against GANprior and
SAGAN in both DIP and zero-shot reconstructions (p < 0.05).
Compared to the second-best method, SLATER yields 4.4dB
higher PSNR and 7.7% higher SSIM in DIP, and 4.1dB higher
PSNR and 5.9% higher SSIM in zero-shot reconstruction.
Furthermore, SLATER yields 5.1dB higher PSNR and 7.0%
higher SSIM over SLATERDIP. These results indicate that the
cross-attention transformer blocks in SLATER enhance model
invertability compared to CNN architectures with or without
self-attention and that the unsupervised pretraining stage in
SLATER improves reconstruction performance.

C. Within-Domain Reconstructions

Next, we assessed within-domain reconstruction perfor-
mance when the training and testing domains matched (e.g., T1
reconstruction based on a T1-prior for SLATER). SLATER
was compared against LORAKS, GANsup, SSDU, GANprior
and SAGAN at R=4 and 8. Representative reconstructions
are shown for IXI in Supp. Figs. 6 and 7, and for fastMRI
in Fig. 6 and Supp. Fig. 8. SLATER yields lower residual
errors and higher acuity in depicting detailed tissue structure
than competing methods. Quantitative assessments are listed
in Supp. Table I and Table II. SLATER achieves significantly
enhanced reconstruction quality against all competing unsu-
pervised methods ( p < 0.05) offering 1.1dB higher PSNR
and 1.1% higher SSIM compared to the second-best method.
Furthermore, it offers 4.4dB higher PSNR and 5.5% higher
SSIM compared to GANprior. It also yields higher performance
than GANsup in all tasks (p < 0.05), except at R=8 in
IXI where the two methods perform similarly and R=8 in
fastMRI where GANsup yields higher SSIM. These results
indicate that SLATER offers enhanced reconstruction quality
for within-domain tasks compared to unsupervised baselines,
while offering on par performance to a supervised baseline.
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TABLE I
RECONSTRUCTION PERFORMANCE OF DIP AND ZERO-SHOT RECONSTRUCTIONS FOR T1- AND T2-WEIGHTED ACQUISITIONS IXI AT R=4 AND 8.

PERFORMANCE METRICS ARE PRESENTED AS MEAN ± STANDARD DEVIATION ACROSS TEST SUBJECTS. RESULTS ARE LISTED

FOR GANPRIOR , SAGAN, SLATER, THEIR DIP VARIANTS

TABLE II
WITHIN-DOMAIN RECONSTRUCTION PERFORMANCE FOR T1- AND T2-WEIGHTED ACQUISITIONS IN FASTMRI AT R=4 AND 8

Fig. 6. Within-domain reconstructions of a T1-weighted acquisition in fastMRI at R=4. Results are shown for ZF, LORAKS, GANsup, SSDU, GANprior,
SAGAN and SLATER along with the reference image, and error maps in the bottom row.

D. Across-Domain Reconstructions

We then evaluated across-domain reconstruction perfor-
mance when the tissue contrast in the test domain was
different than that in the domain of the trained MRI prior
(e.g., T2 reconstructions based on a T1-prior). SLATER was
compared against LORAKS, GANsup, SSDU, GANprior and
SAGAN at R=4. Representative results are shown for IXI in
Supp. Figs. 9 and 10, and for fastMRI in Fig. 7 and Supp.
Fig. 11. Quantitative assessments are listed in Table III. Again,
SLATER yields lower residual errors and higher acuity in
depicting detailed tissue structure. It also achieves superior
reconstruction quality against all competing supervised and
unsupervised methods ( p < 0.05), offering 2.5dB higher
PSNR and 1.5% higher SSIM compared to the second-best
method. Static models that are not adapted during inference
such as GANsup and SSDU can yield suboptimal performance
when the data distribution differs between the training and
testing domains. Compared to within-domain reconstruction,

we find that GANsup and SSDU suffer from 1.7dB PSNR,
1.7% SSIM loss on average in across-domain reconstruction.
In contrast, adaptive models such as SLATER can attain more
similar performance for across-domain and within-domain
cases. We find that SLATER’s average performance differs
less than 0.01dB PSNR and 0.11% SSIM between the two
cases. Note that SLATER reconstructions based on within-
domain priors generally yield on par or better performance
than those based on across-domain priors, yet there are few
exceptions with higher across-domain performance that might
be attributed to empirical limitations in gradient-descent opti-
mization (see Discussion).

We also assessed across-domain reconstructions when the
acceleration rate of the imaging operator differed between
training and testing (i.e., trained at R=8 and tested at R=4).
Performance measurements are listed in Supp. Table II.
SLATER achieves superior reconstruction quality against all
competing supervised and unsupervised methods ( p < 0.05),
offering 4.0dB PSNR, 1.5% SSIM improvement over the
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Fig. 7. Across-domain reconstructions of a T2-weighted acquisition in fastMRI at R=4. Results are shown for ZF, LORAKS, GANsup, SSDU,
GANprior, SAGAN and SLATER along with the reference image, and error maps in the bottom row.

TABLE III
ACROSS-DOMAIN RECONSTRUCTION PERFORMANCE FOR T1- AND T2-WEIGHTED ACQUISITIONS IN THE IXI AND FASTMRI

DATASETS AT R=4. IN A->B, A IS THE TRAINING DOMAIN AND B IS THE TEST DOMAIN

second-best method. Note that pre-training for zero-shot meth-
ods including SLATER is agnostic to the imaging oper-
ator, so these methods yield equivalent performance for
within-domain and across-domain reconstructions. In contrast,
GANsup and SSDU that are explicitly trained for a specific
acceleration rate suffer from 3.3dB PSNR, 2.1% SSIM loss on
average in across-domain reconstructions. Collectively, these
results demonstrate that SLATER has improved generalization
capabilities compared to static supervised and unsupervised
models with fixed weights during inference, while still out-
performing zero-shot reconstructions based on pure CNN
architectures.

E. Ablation Experiments

We examined the contributions of individual parameter
sets in SLATER that are optimized during inference. Variant
models were built by progressively introducing optimiza-
tion for latent variables, noise and network weights. Supp.
Table III lists performance metrics for experiments on T1- and
T2-weighted acquisitions in the IXI dataset at R=4. On aver-
age, the incurred performance gain in (PSNR, SSIM) is
(4.1dB, 7.2%) with latent optimization, (6.5dB, 11.6%) with
latent and noise optimization, and (10.8dB, 14.0%) with latent,
noise and weight optimization. These results indicate the
importance of each component in SLATER.

F. Weight Propagation

Average inference times for competing methods are listed
in Table IV (see Supp. Table IV for training times in the IXI

TABLE IV
AVERAGE INFERENCE TIMES IN SEC PER CROSS SECTION. RUN

TIMES WITHOUT AND WITH WEIGHT PROPAGATION (WP) ARE

LISTED FOR ZERO-SHOT RECONSTRUCTIONS. SAGAN DOES

NOT PERFORM WEIGHT OPTIMIZATION, SO IT
IS UNAFFECTED BY WP

dataset). Model adaptation to specific test samples in zero-
shot reconstructions leads to prolonged inference. In principle,
neighboring cross-sections with structural correlations should
have similar reconstructions. Thus we reasoned that propagat-
ing model parameters across consecutive cross-sections should
increase efficiency by accelerating the progression onto high-
quality reconstructions. Accordingly, the network weights for
a given cross-section at the end of its inference optimization
were stored, and then used to initialize inference optimization
for the next cross-section within each subject. Latent vari-
ables and noise were not shared as they control context and
fine details that could vary between cross-sections. Table IV
lists inference times with this weight propagation procedure
(see Supp. Table V for reconstruction performance). While
methods that do not perform model adaptation still provide
faster inference, weight propagation substantially increases the
inference efficiency for SLATER to improve its practicality.

VI. DISCUSSION

Here we propose zero-shot learned adversarial transformers
for unsupervised reconstruction in accelerated MRI. To our
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knowledge, this is the first study to introduce a transformer
network for MRI reconstruction. Traditional GANs contain
cascades of convolutional layers, which might limit abil-
ity to capture long-range spatial dependencies. We instead
employed cross-attention transformer blocks to efficiently
capture contextual image features. Note that self-attention
among all feature map locations leads to excessive com-
putational burden [36]. As such, self-attention modules fol-
lowing convolutional blocks have only been leveraged in
layers with modest resolution to prevent quadratic complexity
[35], [90]–[93]. In contrast, the cross-attention mechanism
between low-dimensional latent variables and image features
permits use at higher resolutions [75].

Our demonstrations clearly indicate the superiority of
the proposed method over a fully-supervised GAN model
(GANsup), a self-supervised model (SSDU), DIP based
on CNN and self-attention GANs (GANDIP, SAGANDIP),
and zero-shot reconstructions (GANprior, SAGAN). SLATER
offers on par performance with GANsup for within-domain
tasks, while it outperforms GANsup for across-domain tasks.
SLATER also outperforms DIP by a substantial margin, which
can be attributed to its MRI prior. Lastly, SLATER yields
superior performance to GANprior that indicates the importance
of transformer blocks in learning a high-fidelity prior.

Recent studies aiming to reduce supervision requirements
related to raw data have proposed unpaired or unsuper-
vised learning strategies for MRI reconstruction. A successful
approach is to train models on unpaired samples of undersam-
pled and fully-sampled acquisitions [12], [18], [61]. Another
promising approach is to train models via self-supervision on
undersampled data [21], [23]–[25]. Both approaches perform
model training in conjunction with the imaging operator to
map undersampled acquisitions to MR images. Trained model
weights that reflect an indirect prior to reduce artifacts are
then fixed during inference. Thus, reconstructions based on an
across-domain prior can suffer from suboptimal generalization
due to inconsistencies in the data distribution (e.g., tissue
contrast) or the imaging operator (e.g., acceleration rate)
between training and testing domains.

SLATER instead learns an MRI prior agnostic to the imag-
ing operator that is later adapted to test data during infer-
ence. Prior adaptation involves an inference optimization with
considerable computational burden compared to static models
with fixed priors. Yet, our experiments indicate that it mitigates
potential performance losses during across-domain reconstruc-
tions. Ideally, a within-domain prior would be expected to
initialize the inference optimization closer to a desirable local
minimum, resulting in on par or higher performance than an
across-domain prior. Given complex loss surfaces for deep
models, however, gradient-descent optimizers can occasionally
show non-monotonic behavior approaching less preferred min-
ima despite favorable initialization [94]. The few cases where
an across-domain prior yielded relatively higher performance
are likely attributed to such behavior, since we observed
that the performance gap between the priors diminished with
substantially prolonged optimizations in unreported experi-
ments. That said, we opted for early stopping during inference
to maintain a desirable compromise between performance

and inference time while also mitigating potential risks for
over-fitting [30], [73].

The inference optimization performed during zero-shot
reconstruction is closely related to DIP methods [73]. Com-
pared to DIP with randomly initialized networks, here we
show that SLATER yields enhanced reconstruction quality
via a pre-trained prior that is more strongly tuned towards
the distribution of MR images. Yet, it remains an important
research topic to examine the convergence behavior of both
untrained and pre-trained models. Several recent studies on
accelerated imaging report theoretical and empirical valida-
tion of convergence for iterative optimization with traditional
recovery methods [95] as well as untrained generative pri-
ors [96], [97]. Further theoretical and empirical research is
warranted to investigate whether these results generalize to
pre-trained priors.

Among recent efforts, the closest to the presented approach
are prior-adaptation methods in [33] that uses a variational
auto-encoder to learn patch priors and in [32] that uses a
GAN to learn image priors. Our work differs from these
efforts in the following aspects: (i) Compared to [33] that uses
a patch-based implementation, we leverage an image-based
implementation that can improve performance in leveraging
non-local context. (ii) [33] uses a fixed patch prior during
inference, whereas we perform test-sample specific adaptation
of the prior. (iii) Compared to [32] that uses a CNN-based
GAN, here we use cross-attention transformers to better cap-
ture long-range spatial dependencies. (iv) SLATER includes
noise and latents at each synthesizer layer to better control
image features.

Flow-based models have also been proposed to learn priors
for inverse problems [98]. These models use a composition of
fully-invertible flow steps that transform latent variables onto
data samples, and they offer exact estimates of the maximum
likelihood of data samples and improved immunity against
representation errors due to bias. In comparison, adversar-
ial models such as SLATER implicitly minimize discrep-
ancy between generated and actual data distributions without
explicit estimation of probability densities. Note, however, that
flow-based models characteristically require high-dimensional
latent spaces to retain a target level of expressiveness, which
might result in a less favorable trade-off between computa-
tional burden and quality of generated samples [99]. It remains
important future work to compare flow-based and adversarial
methods as well as their hybrids in the context of MRI
reconstruction.

Several lines of development can be pursued for the
proposed technique. First, zero-shot reconstructions can be
initialized with latent estimates based on conventional par-
allel imaging/compressed sensing reconstructions. This can
increase computational efficiency by shortening the inference
procedure. Second, the reconstruction loss in SLATER can be
combined with SURE-type estimates or regularization terms
on network weights [27]. Here we did not explicitly regularize
the weights, latents or noise to allow higher degree of consis-
tency to acquired data. When desired, network regularization
and on-line error estimates can be introduced to reduce poten-
tial for overfitting. Third, SLATER learns a coil-combined
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MRI prior and subsequently incorporates coil-sensitivity infor-
mation during zero-shot reconstruction. This is achieved by
back-projecting the synthesizer output onto individual coils.
A powerful alternative is to build a synthesizer with a con-
sistent prior across coils to generate multi-coil images [31].
Similar computational efficiency might be expected from both
approaches that use a common MRI prior across coils. That
said, effects of the decoupling strategy in SLATER against the
channel-consistence prior on reconstruction quality remain to
be investigated.

SLATER pre-training performs unsupervised generative
modeling of coil-combined MR images derived from fully-
sampled acquisitions. Combined with the imaging operator
during inference, the learned prior is then used to perform
reconstruction of undersampled acquisitions via unsupervised
model adaptation. This decoupled approach bypasses the need
for paired training datasets. Moreover, the MRI prior is
agnostic to the imaging operator and flexibly adapted to the
test domain. Thus, a learned prior can be used to reconstruct
undersampled acquisitions at varying contrasts or acceleration
rates. To lower reliance on fully-sampled datasets, pre-training
can be instead performed on undersampled acquisitions. While
the resultant prior will not entirely reflect the distribution of
high-quality MR images, the model adaptation procedures in
SLATER might limit potential performance losses.

Conventional supervised models perform poorly when train-
ing data are scarce, and domain shifts between the training
and test sets are prominent. Recent studies have proposed
supervised models of low complexity trained with limited
or synthetic data to partly mitigate losses in generalization
performance [100], [101]. While compact models are less
prone to over-fitting, data-driven priors learned from limited
or synthetic data can still elicit a biased representation of MRI
data, increasing risk of inaccurate reconstruction for atypical
anatomy [15], [16]. Future studies are warranted to assess
the utility of supervised compact versus unsupervised models
in domain generalization. Supervised and unsupervised proce-
dures can be combined to facilitate model training on larger
datasets by mixing paired and unpaired data. Unsupervised
adaptation of such semi-supervised models during inference
might further enhance reliability against atypical anatomy.

VII. CONCLUSION

Here we introduced a novel unsupervised MRI reconstruc-
tion based on an unconditional deep adversarial network.
SLATER leverages cross-attention transformers to improve
capture of contextual image features. Benefits of SLATER over
state-of-the-art supervised and unsupervised methods were
demonstrated in brain MRI. SLATER can also be adopted for
structural and dynamic MRI in other anatomies, or other imag-
ing modalities such as CT. Reduced supervision requirements
and subject-specific adaptation render SLATER a promising
candidate for high-performance accelerated MRI.
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