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Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions

based on quantum confinement of individual nanowires. Employing large-scale atomistic

pseudopotential computations, as yet unexplored branched nanostructures are investigated in the

subsystem level as well as in full assembly. The end product is a simple but versatile expression for

the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters,

number of crossings, and wire orientations. Further progress along this line can potentially topple the

bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and

leading to an enabling structure. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830039]

The sway of silicon technology on the industrial-scale

fabrication generally fosters developments within the same

material paradigm of silicon and its native oxide. In this

respect, under the pressing demands on functionality and

reconfigurability, silicon-based nano-networks (SiNets) with

their added dimensional and architectural degrees of freedom

will undoubtedly be embraced by the semiconductor com-

munity.1 The looming appearance of SiNets hinges upon the

advancements made on the synthesis of silicon nanowires

(NWs) within the past decade.2–6 En route, branched nano-

crystals,7 branched,8–10 and tree-like11 NWs were realized,

followed by the connection of these individual branched

nanostructures into large-scale nanowire networks,12,13 in

some cases using other semiconductors. In particular to

SiNets, recently several synthesis procedures have been

accomplished which are employed in the fabrication of ther-

moelectric devices,14 biosensors,15 and photodetectors.16

Notwithstanding, there appears to be a very limited

understanding of how to tune the electronic properties of

NW networks, which is further compounded by the electrical

contact design requirements for proper band alignments. As

the encompassing gist of such technical issues, essentially

we need to know how will the promising NW utilities be

taken over to networks and will networks reveal even new

features? These questions form the aspiration of our work. In

no doubt, only after having a solid understanding of the

underlying electronic properties, can one suggest optimum

SiNet morphologies tailored to specific functionalities.

Experimental difficulties on determining the electronic

properties of nanostructures call for realistic computational

tools with predictive capabilities. For Si NWs, many elec-

tronic structure calculations already exist in the literature.17–25

A comprehensive review on the theoretical investigations

about Si NWs is given by Rurali.26 In contrast to the single Si

NWs, hitherto, only a few theoretical studies have been car-

ried out for the electronic properties of branched Si NWs and

virtually none on SiNets. Menon et al.27 investigated branched

pristine Si NWs whereas actual grown NWs have always pas-

sivated surfaces. Avramov et al.28 considered some very small

size flower-like Si nanocrystals rather than branched Si NWs.

The lack of more realistic theoretical attempts in such an

experimentally attractive area can be explained by the fact

that even the smallest branched systems, including surface

passivation, contains �103 to 104 atoms in the computational

supercell. The comprehensive study of such structures is one

of the prevailing challenges for the first-principles methods

due to drastically increased computational load which inevita-

bly invites more feasible semiempirical techniques.

The aim of this study is to lay the groundwork in the

level of single-particle semiempirical atomistic pseudopoten-

tials29 for SiNets embedded in SiO2 within a restricted

energy range around the bandgap. For this purpose, first, we

consider Si NWs oriented in h100i; h110i; h111i, and h112i
crystalline directions. We calculate their energy gaps as well

as valence and conduction band edge alignments with

respect to bulk Si as a function of wire diameter. This is fol-

lowed by a detailed analysis of two- and three-dimensional

SiNets to establish an understanding of their electronic prop-

erties. Comprehensive results are consolidated into a general

expression which provides a simple way to estimate the elec-

tronic properties of SiNets.

In our computational framework, the semiempirical

pseudopotential-based atomistic Hamiltonian is solved using

an expansion basis formed by the linear combination of bulk

bands (LCBB) of the constituents of the nanostructure, i.e.,

Si and SiO2.30,31 While non-self-consistent in nature, semi-

empirical techniques have the benefit that the calculated

bandgaps of nanostructures inherently agree with the experi-

mental values.25,29 The surface passivation is provided by

embedding the NW structures into an artificial wide bandgap

host matrix which is meant to represent silica.32 In particular,

the embedding matrix has the same band edge line up and

dielectric constant as silica, but it is lattice-matched with the

diamond structure of Si (for details, see the supplementary

material33). Although missing surface relaxation and strain

effects, the competence of our method has been validated, in

the context of embedded Si and Ge nanocrystals, confronting

with experimental data for the linear32 and third-order non-

linear optical properties34,35 and the quantum-confined Stark

effect.36a)Electronic mail: bulutay@fen.bilkent.edu.tr
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To set the stage for SiNets, first we establish the single

NW case. For oxide-passivated Si NWs aligned along the

h100i; h110i; h111i, and h112i crystalline orientations, we

report the effective electronic bandgaps, regardless of

whether it is direct or indirect. In Fig. 1, our NW results are

compared with a compilation of some representative experi-

mental and theoretical data for wire diameters in the range of

0.5 nm–3.5 nm. Note that a strict comparison will not be

meaningful as the Si NWs considered here are embedded in

SiO2 whereas the literature values are for H-passivated Si

NWs. In general terms, oxide passivation is observed to

show similar trends like that of H-passivation.

In Fig. 2, we display our bandgap results for different

NW orientations. For all directions, the gaps decrease

asymptotically towards the bulk Si value with increasing

wire diameter, reflecting the reduction of the quantum con-

finement effect. In this figure, dependence of the bandgap Eg

on the wire diameter is described by

Eg ¼ Ebulk
g þ Cd�a ; (1)

as proposed according to the effective mass approximation.37

In this expression, d is the diameter of the wire, C and a are

fitting parameters, and Ebulk
g ¼ 1:17 eV is the experimental

bulk Si bandgap value. The fitted {C, a} parameters are

listed in Table I. In the fitting procedure, we include data

points for diameters above �1.3 nm. This is based on our ob-

servation that in the excluded strong confinement regime a

different physical mechanism sets in. Namely, the wave

function penetrates into the oxide matrix, thereby experienc-

ing a larger effective diameter.23 For this reason, in Fig. 2

the data points of smaller diameters somewhat deviate from

the fitting curves.

We can note that the hallmark of the quantum confine-

ment within the effective mass approximation is the 1/d2

scaling of the single-particle state energies.38 The same

behavior prevails even when valence band coupling and

FIG. 1. Bandgap energies as a function

of diameter for [100], [112], [110], and

[111]-oriented Si NWs. Our results for

oxide-passivated NWs (solid lines with

filled circles) are compared with data of

experimental5 and theoretical results of

H-passivated NWs including empirical

pseudopotential method,25 semiempiri-

cal tight binding,24 and density func-

tional theory calculations correcting

bandgaps with GW approximation,17–20

hybrid functionals,21,22 or scissors

operation.23

FIG. 2. Bandgap energy of oxide-passivated Si NWs as a function of diame-

ter. The values are fitted with a Cd�a form. Inset shows the variation of va-

lence and conduction band edges. The dashed lines of the inset are just

guides to the eyes.

TABLE I. Wire orientation-dependent fitting parameters associated with Eq.

(1) (also used for Eq. (2)) for the main gap energy (C, a) as well as for VB

(CVBE; aVBE) and CB (CCBE; aCBE) edge energies. When diameters d in Eqs.

(1) and (2) are in nm units, the energies come out in units of eV.

h100i h110i h111i h112i

C 3.31 2.47 2.25 2.98

a 1.57 1.66 1.67 1.76

CVBE �1.22 �0.45 �0.49 �0.69

aVBE 1.64 1.66 1.94 1.98

CCBE 2.11 2.07 1.74 2.25

aCBE 1.63 1.75 1.66 1.74
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conduction band off-C minima are taken to account in the

underlying band structure.39 On the other hand, in our analy-

sis the exponent, a significantly deviates from 2 to values in

the range 1.57–1.76 depending on the direction (Table I).

Discrepancy stems from the lack of atomistic potentials in

the former that relies solely on the effective mass and the ki-

netic energy of the carriers.38 Our assertion is that an atomis-

tic treatment becomes crucial even close to the band edge

energies.

In the inset of Fig. 2, we plot the variation of valence

band (VB) and conduction band (CB) edges as a function of

wire diameter for different wire orientations. Indicating the

bulk Si band edges with horizontal solid lines, this figure

also illustrates the alignments of band edges of Si NWs with

respect to bulk Si for increasing diameters. We find out that

the band edge energies have the same functional dependence

with respect to NW diameter just like the bandgaps, as in Eq.

(1). Hence, setting the bulk VB maximum of Si to zero, VB

and CB edge energies can also be described by EVBE

¼ CVBEd�aVBE and ECBE ¼ Ebulk
g þ CCBEd�aCBE , where

fCVBE; aVBEg and fCCBE; aCBEg are fitted for the data points

given in the inset of Fig. 2 and listed in Table I. Notably,

aCBE behaves similar to the bandgap exponents a, with either

one being relatively less sensitive to wire directions. In strik-

ing contrast, aVBE displays a curious dual character: h111i
and h112i wires have values around 2 whereas h100i and

h110i substantially deviate from the quadratic behavior.40,43

Considering device applications, in the supplementary mate-

rial,33 we also provide the band offsets of Si NWs with

respect to bulk Si and SiO2.33

Regarding the H-passivated Si NWs, it is known that at a

given wire diameter up to around 3 nm, the bandgap follows

the ordering E
h100i
g > E

h111i
g � E

h112i
g > E

h110i
g with NW orien-

tation.22,26 In our oxide-passivation case, although h100i Si

NWs have the largest bandgap energy as before, the ordering

changes to E
h100i
g > E

h112i
g > E

h110i
g � E

h111i
g (see Fig. 2). This

ordering is robust under several different pseudopotential

parameterizations that we tried for the oxide matrix.

Moreover, this observation is in accord with the results of

Ref. 41, where the electronic structure of oxide-sheathed Si

NWs is compared with reference H-passivated Si NWs, and

it is reported that the magnitude of Eg shrinks for h100i and

h111i-oriented SiNWs while it increases for both h110i and

h112i-oriented SiNWs. Given the fact that only one calcula-

tion was provided in that work for each orientation, more

extensive first-principles calculations are required to extract

general trends on the ordering of bandgaps of oxidized Si

NWs with wire alignment.

Yan et al.19 and Niquet et al.24 give the VB and CB

edges for H-passivated Si NWs which agree with the general

trends of our VB edge energies (see the inset of Fig. 2).

However, for the CB edge energies of h112i and h110i Si

NWs, they report a smaller variation with diameter (even

less than 0.5 meV for h110i Si NWs) while in our case, those

values change as much as the CB edges of h100i and h111i
Si NWs. This behavior of h112i and h110i Si NWs gives rise

to the distinct bandgap anisotropy of our oxide-passivated Si

NWs.

Next, we consider the crossings of Si NWs as building

blocks of SiNets (see Fig. 3). The branched Si NWs

synthesized so far have the tendency to grow in the h111i
crystal directions with larger diameters (>20 nm).8,9,11

However, at sub-10 nm diameters the occurrence of h110i
NW alignment trumps over other directions.4,6,42 Henceforth,

our results, referring to sub-10 nm diameter crossings of Si

NWs, are mainly quoted for the crossings of h110i-oriented

NWs. Nevertheless, we have performed calculations for

crossings of h100i; h110i; h111i, and h112i aligned NWs as

well. Thus, our general conclusions are valid for all directions

unless stated otherwise.

As Figs. 3(a) and 3(c) show, our computational super-

cells contain crossings of two or three NWs. Taking into

account the periodic boundary conditions, the calculations

are performed for regular arrays of crossings (Figs. 3(b) and

3(d)). These structures are again embedded into the oxide

matrix. We note that in comparison to single NW calcula-

tions, network supercells require much more atoms. For

instance, in the supercell of a crossing of three 3 nm-thick

NWs, the supercell consists of 3694 Si and 7970 matrix

atoms, respectively. We consider unrelaxed crossings of Si

NWs, i.e., no changes of crossing morphologies by interface

energy minimization are taken into account. Although the re-

alistic crossings have some reconstructions, the electron mi-

croscopy images show that the intercrossing regions are still

very close to the ideal unrelaxed case.8–10

The results for various combinations are summarized in

Table II. Initially, to unambiguously address the effect of

crossing, we check the case when the participating NWs do

not cross each other (data shown in brackets in Table II) and

are separated by at least 1 nm to suppress their interactions.

We observe that (i) the number of NWs in the supercell does

not alter the calculated bandgap when the diameters are

equal (Nos. 1–3 and 4–6), (ii) the bandgap is that of the

thickest NW when the diameters are distinct. On the other

FIG. 3. The computational supercells contain (a) two- or (c) three-wire

crossings to build up (b) two- or (d) three-dimensional continuous SiNets,

respectively. The wire orientations are in the family of h110i directions. For

clarity, Si atoms are shown in different colors for the crossing wires, and the

matrix atoms are not shown.
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hand, in the case of crossing NWs, the bandgap values

reduce with the increasing number of crossing wires (Nos.

1–3 and 4–6). This is caused by the reduction in confinement

due to the wave function extensions into the branches. Here,

in going from single NW to two-wire crossing, a significant

reduction in the bandgap occurs which becomes not as pro-

nounced when an additional third crossing is introduced

(Nos. 1–3). Other aspects of crossing can be discussed refer-

ring Nos. 8 and 9: while the bandgap is determined by the

thicker NW in the latter, the thinner NW still influences a

marginal reduction in the former. Similar behavior is valid

for the crossings of three NWs, that is, the bandgap is domi-

nated by the thickest NW while other NWs exert a reduction

to the extent of their diameters.

To estimate the bandgap values of SiNets, our observa-

tions on NW crossings can be consolidated into a generalized

form of Eq. (1). As our main result, we propose for the

bandgap Eg of N crossing wires, the expression

Eg ¼ Ebulk
g þ C

XN

i¼1

db
i

 !�a=b

; (2)

where Ebulk
g is the bandgap of bulk Si and the di is the diame-

ter of the NW indexed by i. Here C and a are fitting parame-

ters inherited from Eq. (1). Within the notion of generalized

mean,33 the exponent b governs the contributions of each

NW, namely, the larger the parameter b, the higher the con-

tribution of the thickest NW to the bandgap. Ultimately the

specific value of b is an outcome of the material-dependent

atomic potentials and hence the quantum size effect. For a

single NW (N¼ 1), Eq. (2) reduces to Eq. (1) which suggests

that {C, a} of single NWs as in Table I can also be used for

Eq. (2). Regarding the sensitivity to b, the estimated bandgap

varies only by 60.1 eV when b changes in the range 4–7.

Based on our directional analysis, we suggest to use b¼ 5.5

for h110i; h111i, and h112i crossings whereas for h100i
crossings b¼ 4 yields a better estimation. Figure 4 shows the

calculated data points and corresponding plots of Eq. (2) for

three-dimensional networks (N¼ 3), for b¼ 5.5. The overall

performance of Eq. (2) is highly satisfactory with the antici-

pated deviations for the very small diameters as we discussed

in the single NW case.

In order to estimate VB and CB offsets of networks with

respect to bulk Si, the form of Eq. (2) can again be invoked as

done for the single NW case. Corresponding plots are given in

the supplementary material33 employing fCVBE; aVBEg and

fCCBE; aCBEg parameters of single Si NWs (given in Table I)

together with the same b values of bandgap estimation.

In conclusion, we computed the electronic bandgap

energies of Si NW structures embedded into silica using an

atomistic pseudopotential approach. First, we investigated

the variation of bandgap and band edge alignments as a func-

tion of wire diameter for various orientations of Si NWs. Our

results indicate a bandgap anisotropy that differs from the H-

passivated case. After establishing the single-wire case, we

extended our consideration to the main subject of this paper,

the two- and three-dimensional SiNets. Based on a compre-

hensive analysis, we proposed an expression to estimate the

bandgap values of networks as a function of crossing wire

diameters. The form of the expression should, in principle,

hold for other materials as well, to assist bandgap engineer-

ing of NW networks. This expression can also be used to cal-

culate the valence and conduction band edge alignments

with respect to bulk Si. The semiempirical atomistic calcula-

tions given in this work are for relatively large diameters. A

complimentary follow-up could be a first-principles investi-

gation for small-diameter networks to shed light especially

on surface chemistry and strain effects.
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TABLE II. Bandgap energies for Si NWs (Nos. 1, 4, 7), two-wire (Nos. 2, 5,

8, 9), and three-wire crossings (Nos. 3, 6, 10–14). Non-crossing bandgap

value for each case is quoted in brackets.

Wire diameters

No. d1 (nm) d2 (nm) d3 (nm) Eg (eV)

1 1.50 … … 2.40 …

2 1.50 1.50 … 2.18 [2.40]

3 1.50 1.50 1.50 2.11 [2.40]

4 2.03 … … 1.99 …

5 2.03 2.03 … 1.84 [1.99]

6 2.03 2.03 2.03 1.73 [1.99]

7 2.94 … … 1.57 …

8 1.50 2.03 … 1.96 [1.99]

9 1.50 2.94 … 1.57 [1.57]

10 1.50 1.50 2.03 1.85 [1.99]

11 1.50 2.03 2.03 1.81 [1.99]

12 1.50 1.50 2.94 1.57 [1.57]

13 1.50 2.03 2.94 1.56 [1.57]

14 2.03 2.03 2.94 1.55 [1.57]

FIG. 4. Bandgap values for three-wire crossings. The calculated data points

are shown with the markers; the lines are obtained via Eq. (2) (b¼ 5.5 is used,

see also Table I). The crossing wire alignments are along h110i directions.
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